cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359327 Number of divisors of 6*n-5 of form 6*k+5.

This page as a plain text file.
%I A359327 #18 Aug 14 2023 01:59:32
%S A359327 0,0,0,0,1,0,0,0,0,2,0,0,0,0,2,0,0,0,0,2,1,0,0,0,2,0,0,0,0,2,0,2,0,0,
%T A359327 2,0,0,0,0,2,0,0,2,0,2,0,0,0,1,2,0,0,0,2,2,0,0,0,0,2,0,0,0,0,4,2,0,0,
%U A359327 0,2,0,0,0,0,2,2,0,0,0,2,0,0,2,0,2,0,2,0,1,2
%N A359327 Number of divisors of 6*n-5 of form 6*k+5.
%H A359327 Seiichi Manyama, <a href="/A359327/b359327.txt">Table of n, a(n) for n = 1..10000</a>
%F A359327 a(n) = A319995(6*n-5).
%F A359327 G.f.: Sum_{k>0} x^(5*k)/(1 - x^(6*k-1)).
%t A359327 a[n_] := DivisorSum[6*n-5, 1 &, Mod[#, 6] == 5 &]; Array[a, 100] (* _Amiram Eldar_, Aug 14 2023 *)
%o A359327 (PARI) a(n) = sumdiv(6*n-5, d, d%6==5);
%o A359327 (PARI) my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/(1-x^(6*k-1)))))
%Y A359327 Cf. A319995, A359305, A359324, A359325, A359326.
%Y A359327 Cf. A359239, A359240, A359241.
%K A359327 nonn,easy
%O A359327 1,10
%A A359327 _Seiichi Manyama_, Dec 25 2022