A359344 Largest pandigital square with n digits.
9814072356, 99853472016, 998732401956, 9998490637521, 99992580137641, 999984024130576, 9999925800137641, 99999987340240516, 999999258000137641, 9999999562540763281, 99999992580000137641, 999999991102375684521, 9999999925800000137641, 99999999986188478340025
Offset: 10
Programs
-
Maple
a:=proc(n::posint) local s, k, K: if n<10 then s:=NULL: else for k from floor(sqrt(10^n)) to ceil(sqrt(10^(n-1))) by -1 do K:=convert(k^2,base,10); if nops({op(K)})=10 then s:=k^2: break: fi: od: fi: return s; end: seq(a(n),n=10..30);
-
Python
from math import isqrt def c(n): return len(set(str(n))) == 10 def a(n): ub, lb = isqrt(10**n-1), isqrt(10**(n-1)) if n&1 else isqrt(10**(n-1))+1 return next((k*k for k in range(ub, lb-1, -1) if c(k*k)), None) print([a(n) for n in range(10, 24)]) # Michael S. Branicky, Dec 27 2022
Formula
a(n) = (10^(n/2-3)-1)*10^(n/2+3) + 258*10^(n/2) + 137641 for n >= 14 even.
Comments