A359350 Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n is constructed by replacing A336811(n,k) with the largest partition into consecutive parts of A000217(A336811(n,k)).
1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 7, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 8, 7, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 3, 2, 1, 1; 4, 3, 2, 1, 2, 1, 1; 5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1; 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1; ... Or also the triangle begins: [1]; [2, 1]; [3, 2, 1], [1]; [4, 3, 2, 1], [2, 1], [1]; [5, 4, 3, 2, 1], [3, 2, 1], [2, 1], [1], [1]; [6, 5, 4, 3, 2, 1], [4, 3, 2, 1], [3, 2, 1], [2, 1], [2, 1], [1], [1]; ... For n = 3 the third row is [3, 2, 1, 1]. The divisors of these terms are [1, 3], [1, 2], [1], [1]. These six divisors are also all parts of all partitions of 3. They are [3], [2, 1], [1, 1, 1].
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10980 (rows 1..21 of the triangle, flattened)
Crossrefs
Programs
-
Mathematica
A359350row[n_]:=Flatten[Table[ConstantArray[Range[n-m,1,-1],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]];Array[A359350row,10] (* Paolo Xausa, Sep 01 2023 *)
Comments