cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359353 a(n) = A026430(A285953(n+1)).

This page as a plain text file.
%I A359353 #8 Jan 31 2023 08:33:35
%S A359353 1,5,8,12,18,21,27,31,35,39,45,50,52,59,61,66,72,75,81,86,88,95,98,
%T A359353 102,108,113,116,120,126,129,135,139,143,147,153,158,160,167,170,174,
%U A359353 180,185,188,192,198,201,207,212,214,221,224,228,234,237,243,248,250
%N A359353 a(n) = A026430(A285953(n+1)).
%C A359353 This is the second of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
%C A359353 (1) u o v, defined by (u o v)(n) = u(v(n));
%C A359353 (2) u o v';
%C A359353 (3) u' o v;
%C A359353 (4) v' o u'.
%C A359353 Every positive integer is in exactly one of the four sequences. Their limiting densities are 4/9, 2/9, 2/9, 1/9, respectively.
%e A359353 (1) u o v = (3, 6, 9, 10, 14, 15, 16, 19, 23, 24, 26, 28, 30, 33, 36, 37, 41, ...) = A359352
%e A359353 (2) u o v' = (1, 5, 8, 12, 18, 21, 27, 31, 35, 39, 45, 50, 52, 59, 61, 66, 72, ...) = A359353
%e A359353 (3) u' o v = (4, 11, 17, 20, 25, 29, 32, 38, 43, 47, 49, 56, 58, 64, 71, 74, ...) = A360134
%e A359353 (4) u' o v' = (2, 7, 13, 22, 34, 40, 53, 62, 67, 76, 89, 97, 104, 115, 122, ...) = A360135
%t A359353 z = 2000; zz = 100;
%t A359353 u = Accumulate[1 + ThueMorse /@ Range[0, 600]]; (* A026430 *)
%t A359353 u1 = Complement[Range[Max[u]], u];  (* A356133 *)
%t A359353 v = u + 1;  (* A285954 *)
%t A359353 v1 = Complement[Range[Max[v]], v];  (* A285953 *)
%t A359353 Table[u[[v[[n]]]], {n, 1, zz}]      (* A359352 *)
%t A359353 Table[u[[v1[[n]]]], {n, 1, zz}]     (* A359353 *)
%t A359353 Table[u1[[v[[n]]]], {n, 1, zz}]     (* A360134 *)
%t A359353 Table[u1[[v1[[n]]]], {n, 1, zz}]    (* A360135 *)
%Y A359353 Cf. A026530, A359352, A285953, A285954, A359277 (intersections instead of results of composition), A359352, A360134-A360139.
%K A359353 nonn,easy
%O A359353 1,2
%A A359353 _Clark Kimberling_, Jan 30 2023