This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359355 #20 Jul 01 2025 09:03:41 %S A359355 1,1,8,122,2795,86472,3403127,164029595,9433737120,635182667816, %T A359355 49344452550230,4371727233798927,437489737355466560, %U A359355 49048715505983309703,6116937802946210183545,843220239072837883168510,127757559136845878072576947,21166434937698025552654090472 %N A359355 a(n) = A359107(2*n, n) = Sum_{j=0..n} Stirling2(2*n, j) = Sum_{j=0..n} A048993(2*n, j). %C A359355 a(n) is the number of partitions of an 2n-set that contain at most n nonempty subsets. %H A359355 Alois P. Heinz, <a href="/A359355/b359355.txt">Table of n, a(n) for n = 0..288</a> %F A359355 a(n) = A102661(2n,n) for n >= 1. - _Alois P. Heinz_, Jun 13 2023 %p A359355 b:= proc(n) option remember; `if`(n=0, 1, %p A359355 add(expand(b(n-j)*binomial(n-1, j-1)*x), j=1..n)) %p A359355 end: %p A359355 a:= n-> (p-> add(coeff(p, x, i), i=0..n))(b(2*n, 0)): %p A359355 seq(a(n), n=0..17); # _Alois P. Heinz_, Jun 13 2023 %t A359355 b[n_] := b[n] = If[n == 0, 1, Sum[Expand[b[n-j]*Binomial[n-1, j-1]*x], {j, 1, n}]]; %t A359355 a[n_] := With[{p = b[2*n]}, Sum[Coefficient[p, x, i], {i, 0, n}]]; %t A359355 Table[a[n], {n, 0, 17}] (* _Jean-François Alcover_, Jul 01 2025, after _Alois P. Heinz_ *) %o A359355 (PARI) a(n) = sum(j=0, n, stirling(2*n, j, 2)); \\ _Michel Marcus_, Dec 27 2022 %Y A359355 Cf. A359107, A048993, A102661. %K A359355 nonn %O A359355 0,3 %A A359355 _Peter Luschny_, Dec 27 2022