cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359360 Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.

This page as a plain text file.
%I A359360 #8 Dec 28 2022 15:42:39
%S A359360 0,1,2,2,3,2,4,3,4,2,5,3,6,2,4,4,7,3,8,3,4,2,9,4,6,2,6,3,10,3,11,5,4,
%T A359360 2,6,4,12,2,4,4,13,3,14,3,6,2,15,5,8,3,4,3,16,4,6,4,4,2,17,4,18,2,6,6,
%U A359360 6,3,19,3,4,3,20,5,21,2,6,3,8,3,22,5,8,2
%N A359360 Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.
%C A359360 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n.
%F A359360 a(n) = A001222(n) * A055396(n).
%e A359360 The partition with Heinz number 7865 is (6,5,5,3), so a(7865) = 4*3 = 12.
%t A359360 Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[1,1]]],{n,100}]
%o A359360 (PARI) a(n) = if (n==1, 0, my(f=factor(n)); bigomega(f)*primepi(f[1, 1])); \\ _Michel Marcus_, Dec 28 2022
%Y A359360 Difference of A056239 and A359358.
%Y A359360 The opposite version is A326846.
%Y A359360 A055396 gives minimum prime index, maximum A061395.
%Y A359360 A112798 list prime indices, length A001222, sum A056239.
%Y A359360 A243055 subtracts the least prime index from the greatest.
%Y A359360 A358195 gives Heinz numbers of rows of A358172, even bisection A241916.
%Y A359360 Cf. A006141, A124010, A246277, A268192, A316413, A325352, A326836, A326837, A326844, A355534, A356958.
%K A359360 nonn
%O A359360 1,3
%A A359360 _Gus Wiseman_, Dec 28 2022