This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359361 #13 Mar 31 2023 05:51:08 %S A359361 1,2,1,2,3,2,3,4,1,2,3,2,4,3,4,5,2,3,4,6,4,5,3,5,1,2,3,4,7,2,4,5,8,3, %T A359361 4,5,4,6,5,6,9,2,3,4,5,3,6,6,7,2,4,6,4,5,6,10,3,5,6,11,1,2,3,4,5,5,7, %U A359361 7,8,4,7,2,4,5,6,12,8,9,6,8,3,4,5,6,13 %N A359361 Irregular triangle read by rows whose n-th row lists the partial sums of the integer partition with Heinz number n. %C A359361 The partial sums of a sequence (a, b, c, ...) are (a, a+b, a+b+c, ...). %C A359361 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The partition with Heinz number n is the reversed n-th row of A112798. %e A359361 Triangle begins: %e A359361 2: 1 %e A359361 3: 2 %e A359361 4: 1 2 %e A359361 5: 3 %e A359361 6: 2 3 %e A359361 7: 4 %e A359361 8: 1 2 3 %e A359361 9: 2 4 %e A359361 10: 3 4 %e A359361 11: 5 %e A359361 12: 2 3 4 %e A359361 13: 6 %e A359361 14: 4 5 %e A359361 15: 3 5 %e A359361 16: 1 2 3 4 %e A359361 For example, the integer partition with Heinz number 90 is (3,2,2,1), so row n = 90 is (3,5,7,8). %p A359361 T:= n-> ListTools[PartialSums](sort([seq(numtheory %p A359361 [pi](i[1])$i[2], i=ifactors(n)[2])], `>`))[]: %p A359361 seq(T(n), n=2..50); # _Alois P. Heinz_, Jan 01 2023 %t A359361 Table[Accumulate[Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,2,30}] %Y A359361 Row-lengths are A001222. %Y A359361 The version for standard compositions is A048793, non-reversed A358134. %Y A359361 Last element in each row is A056239. %Y A359361 First element in each row is A061395 %Y A359361 Rows are the partial sums of rows of A296150. %Y A359361 Row-sums are A304818. %Y A359361 A reverse version is A358136, row sums A318283, Heinz numbers A358137. %Y A359361 The sorted Heinz numbers of rows are A359397. %Y A359361 A000041 counts partitions, strict A000009. %Y A359361 A112798 lists prime indices, product A003963. %Y A359361 A355536 lists differences of prime indices. %Y A359361 Cf. A000720, A001221, A055396, A261079, A325362. %K A359361 nonn,tabf %O A359361 2,2 %A A359361 _Gus Wiseman_, Dec 30 2022