cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359362 a(n) = (A001222(n) + 1) * A056239(n), where A001222 counts prime indices and A056239 adds them up.

This page as a plain text file.
%I A359362 #11 Jan 02 2023 02:17:16
%S A359362 0,2,4,6,6,9,8,12,12,12,10,16,12,15,15,20,14,20,16,20,18,18,18,25,18,
%T A359362 21,24,24,20,24,22,30,21,24,21,30,24,27,24,30,26,28,28,28,28,30,30,36,
%U A359362 24,28,27,32,32,35,24,35,30,33,34,35,36,36,32,42,27,32,38
%N A359362 a(n) = (A001222(n) + 1) * A056239(n), where A001222 counts prime indices and A056239 adds them up.
%C A359362 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%F A359362 a(n) = (k + 1) * m, where m and k are the sum and length of the integer partition with Heinz number n.
%F A359362 a(n) = 2*A304818(n) - A261079(n).
%t A359362 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A359362 Table[(PrimeOmega[n]+1)*Total[primeMS[n]],{n,30}]
%o A359362 (Python)
%o A359362 from sympy import primepi, factorint
%o A359362 def A359362(n): return (sum((f:=factorint(n)).values())+1)*sum(primepi(p)*e for p, e in f.items()) # _Chai Wah Wu_, Jan 01 2023
%Y A359362 A055396 gives minimum prime index, maximum A061395.
%Y A359362 A112798 list prime indices, length A001222, sum A056239.
%Y A359362 Cf. A261079, A316413, A326836, A326837, A326844, A326846, A359358.
%K A359362 nonn
%O A359362 1,2
%A A359362 _Gus Wiseman_, Dec 31 2022