A359363 Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1.
1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 10, 1, 0, 1, 20, 50, 20, 1, 0, 1, 35, 175, 175, 35, 1, 0, 1, 56, 490, 980, 490, 56, 1, 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 0, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1 [1] 0, 1 [2] 0, 1, 1 [3] 0, 1, 4, 1 [4] 0, 1, 10, 10, 1 [5] 0, 1, 20, 50, 20, 1 [6] 0, 1, 35, 175, 175, 35, 1 [7] 0, 1, 56, 490, 980, 490, 56, 1 [8] 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1 [9] 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1 . Let p = (p1, p2,..., pn) denote a permutation of {1, 2,..., n}. The pair (p(i), p(i+1)) is a 'rise' if p(i) < p(i+1). Additionally a conventional rise is counted at the beginning of p. T(n, k) is the number of Baxter permutations of {1,2,...,n} with k rises. For example for n = 4, [T(n, k) for k = 0..n] = [0, 1, 10, 10, 1]. The permutations, with preceding number of rises, are: . 1 [4, 3, 2, 1], 3 [2, 3, 4, 1], 2 [3, 4, 2, 1], 3 [2, 3, 1, 4], 2 [3, 2, 4, 1], 3 [2, 1, 3, 4], 2 [3, 2, 1, 4], 3 [1, 3, 4, 2], 2 [2, 4, 3, 1], 3 [1, 3, 2, 4], 2 [4, 2, 3, 1], 3 [3, 4, 1, 2], 2 [2, 1, 4, 3], 3 [3, 1, 2, 4], 2 [4, 2, 1, 3], 3 [1, 2, 4, 3], 2 [1, 4, 3, 2], 3 [1, 4, 2, 3], 2 [4, 1, 3, 2], 3 [4, 1, 2, 3], 2 [4, 3, 1, 2], 4 [1, 2, 3, 4].
Crossrefs
Programs
-
Maple
p := (n, x) -> ifelse(n = 0, 1, x*hypergeom([-1-n, -n, 1-n], [2, 3], -x)): seq(seq(coeff(simplify(p(n, x)), x, k), k = 0..n), n = 0..10); # Alternative: T := proc(n, k) local F; F := n -> n!*(n+1)!*(n+2)!; ifelse(k = 0, k^n, 2*F(n-1)/(F(k-1)*F(n-k))) end: for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
-
PARI
C=binomial; T(n, k) = if(n==0 && k==0, 1, ( C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) ) / ( C(n+1,1) * C(n+1,2) ) ); for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); \\ Joerg Arndt, Jan 04 2024
-
Python
from functools import cache from math import factorial @cache def A359363Row(n: int) -> list[int]: @cache def F(n: int): return factorial(n) ** 3 * ((n+1) * (n+1) * (n+2)) if n == 0: return [1] return [0] + [(2*F(n-1))//(F(k-1) * F(n-k)) for k in range(1, n+1)] for n in range(0, 10): print(A359363Row(n)) # Peter Luschny, Jan 04 2024
-
SageMath
def A359363(n): if n == 0: return SR(1) h = x*hypergeometric([-1 - n, -n, 1 - n], [2, 3], -x) return h.series(x, n + 1).polynomial(SR) for n in range(10): print(A359363(n).list()) def PolyA359363(n, t): return Integer(A359363(n)(x=t).n()) # Peter Luschny, Jan 04 2024
Comments