cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359363 Triangle read by rows. The coefficients of the Baxter polynomials p(0, x) = 1 and p(n, x) = x*hypergeom([-1 - n, -n, 1 - n], [2, 3], -x) for n >= 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 10, 10, 1, 0, 1, 20, 50, 20, 1, 0, 1, 35, 175, 175, 35, 1, 0, 1, 56, 490, 980, 490, 56, 1, 0, 1, 84, 1176, 4116, 4116, 1176, 84, 1, 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1, 0, 1, 165, 4950, 41580, 116424, 116424, 41580, 4950, 165, 1
Offset: 0

Views

Author

Peter Luschny, Dec 28 2022

Keywords

Comments

This triangle is a member of a family of Pascal-like triangles. Let T(n, k, m) = sf(m)*F(n - 1) / (F(k - 1)*F(n - k)) if k > 0 and otherwise k^n, where F(n) = Product_{j=0..m} (n + j)! and sf(m) are the superfactorials A000178. The case m = 2 gives this triangle, some other cases are given in the crossreferences. See also A342889 for a related representation of generalized binomial coefficients.

Examples

			Triangle T(n, k) starts:
[0] 1
[1] 0, 1
[2] 0, 1,   1
[3] 0, 1,   4,    1
[4] 0, 1,  10,   10,     1
[5] 0, 1,  20,   50,    20,     1
[6] 0, 1,  35,  175,   175,    35,     1
[7] 0, 1,  56,  490,   980,   490,    56,    1
[8] 0, 1,  84, 1176,  4116,  4116,  1176,   84,   1
[9] 0, 1, 120, 2520, 14112, 24696, 14112, 2520, 120, 1
.
Let p = (p1, p2,..., pn) denote a permutation of {1, 2,..., n}. The pair (p(i), p(i+1)) is a 'rise' if p(i) < p(i+1). Additionally a conventional rise is counted at the beginning of p.
T(n, k) is the number of Baxter permutations of {1,2,...,n} with k rises. For example for n = 4, [T(n, k) for k = 0..n] = [0, 1, 10, 10, 1]. The permutations, with preceding number of rises, are:
.
1 [4, 3, 2, 1],  3 [2, 3, 4, 1],  2 [3, 4, 2, 1],  3 [2, 3, 1, 4],
2 [3, 2, 4, 1],  3 [2, 1, 3, 4],  2 [3, 2, 1, 4],  3 [1, 3, 4, 2],
2 [2, 4, 3, 1],  3 [1, 3, 2, 4],  2 [4, 2, 3, 1],  3 [3, 4, 1, 2],
2 [2, 1, 4, 3],  3 [3, 1, 2, 4],  2 [4, 2, 1, 3],  3 [1, 2, 4, 3],
2 [1, 4, 3, 2],  3 [1, 4, 2, 3],  2 [4, 1, 3, 2],  3 [4, 1, 2, 3],
2 [4, 3, 1, 2],  4 [1, 2, 3, 4].
		

Crossrefs

Special cases of the general formula: A097805 (m = 0), (0,1)-Pascal triangle; A090181 (m = 1), triangle of Narayana; this triangle (m = 2); A056940 (m = 3), with 1,0,0...; A056941 (m = 4), with 1,0,0...; A142465 (m = 5), with 1,0,0....
Variant: A056939. Diagonals: A000292, A006542, A047819.

Programs

  • Maple
    p := (n, x) -> ifelse(n = 0, 1, x*hypergeom([-1-n, -n, 1-n], [2, 3], -x)):
    seq(seq(coeff(simplify(p(n, x)), x, k), k = 0..n), n = 0..10);
    # Alternative:
    T := proc(n, k) local F; F := n -> n!*(n+1)!*(n+2)!;
    ifelse(k = 0, k^n, 2*F(n-1)/(F(k-1)*F(n-k))) end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
  • PARI
    C=binomial;
    T(n, k) = if(n==0 && k==0, 1, ( C(n+1,k-1) * C(n+1,k) * C(n+1,k+1) ) / ( C(n+1,1) * C(n+1,2) ) );
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());
    \\ Joerg Arndt, Jan 04 2024
    
  • Python
    from functools import cache
    from math import factorial
    @cache
    def A359363Row(n: int) -> list[int]:
        @cache
        def F(n: int): return factorial(n) ** 3 * ((n+1) * (n+1) * (n+2))
        if n == 0: return [1]
        return [0] + [(2*F(n-1))//(F(k-1) * F(n-k)) for k in range(1, n+1)]
    for n in range(0, 10): print(A359363Row(n))
    # Peter Luschny, Jan 04 2024
  • SageMath
    def A359363(n):
        if n == 0: return SR(1)
        h = x*hypergeometric([-1 - n, -n, 1 - n], [2, 3], -x)
        return h.series(x, n + 1).polynomial(SR)
    for n in range(10): print(A359363(n).list())
    def PolyA359363(n, t): return Integer(A359363(n)(x=t).n())
    # Peter Luschny, Jan 04 2024
    

Formula

T(n, k) = [x^k] p(n, x).
T(n, k) = 2*F(n-1)/(F(k-1)*F(n-k)) for k > 0 where F(n) = n!*(n+1)!*(n+2)!.
p(n, 1) = A001181(n), i.e. the Baxter numbers are the values of the Baxter polynomials at x = 1.
(-1)^(n + 1)*p(2*n + 1, -1) = A217800(n) .