cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359364 Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.

This page as a plain text file.
%I A359364 #37 Jan 10 2023 13:05:07
%S A359364 1,1,0,1,0,1,1,0,3,0,1,0,6,0,2,1,0,10,0,10,0,1,0,15,0,30,0,5,1,0,21,0,
%T A359364 70,0,35,0,1,0,28,0,140,0,140,0,14,1,0,36,0,252,0,420,0,126,0,1,0,45,
%U A359364 0,420,0,1050,0,630,0,42,1,0,55,0,660,0,2310,0,2310,0,462,0
%N A359364 Triangle read by rows. The Motzkin triangle, the coefficients of the Motzkin polynomials. M(n, k) = binomial(n, k) * CatalanNumber(k/2) if k is even, otherwise 0.
%C A359364 The generalized Motzkin numbers M(n, k) are a refinement of the Motzkin numbers M(n) (A001006) in the sense that they are coefficients of polynomials M(n, x) = Sum_{n..k} M(n, k) * x^k that take the value M(n) at x = 1. The coefficients of x^n are the aerated Catalan numbers A126120.
%C A359364 Variants are the irregular triangle A055151 with zeros deleted, A097610 with reversed rows, A107131 and A080159.
%C A359364 In the literature the name 'Motzkin triangle' is also used for the triangle A026300, which is generated from the powers of the generating function of the Motzkin numbers.
%H A359364 M. Artioli, G. Dattoli, S. Licciardi, and S. Pagnutti, <a href="https://arxiv.org/abs/1703.07262">Motzkin Numbers: an Operational Point of View</a>, arXiv:1703.07262 [math.CO], 2017, (Table 1 on p. 3).
%F A359364 Let p(n, x) = hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2).
%F A359364 p(n, 1) = A001006(n); p(n, sqrt(2)) = A025235(n); p(n, 2) = A091147(n).
%F A359364 p(2, n) = A002522(n); p(3, n) = A056107(n).
%F A359364 p(n, n) = A359649(n); 2^n*p(n, 1/2) = A000108(n+1).
%F A359364 M(n, k) = [x^k] p(n, x).
%F A359364 M(n, k) = [t^k] (n! * [x^n] exp(x) * BesselI(1, 2*t*x) / (t*x)).
%F A359364 M(n, k) = [t^k][x^n] ((1 - x - sqrt((x-1)^2 - (2*t*x)^2)) / (2*(t*x)^2)).
%F A359364 M(n, n) = A126120(n).
%F A359364 M(n, n-1) = A138364(n), the number of Motzkin n-paths with exactly one flat step.
%F A359364 M(2*n, 2*n) = A000108(n), the number of peakless Motzkin paths having a total of n up and level steps.
%F A359364 M(4*n, 2*n) = A359647(n), the central terms without zeros.
%F A359364 M(2*n+2, 2*n) = A002457(n) = (-4)^n * binomial(-3/2, n).
%F A359364 Sum_{k=0..n} M(n - k, k) = A023426(n).
%F A359364 Sum_{k=0..n} k * M(n, k) = 2*A014531(n-1) = 2*GegenbauerC(n - 2, -n, -1/2).
%F A359364 Sum_{k=0..n} i^k*M(n, k) = A343773(n), (i the imaginary unit), is the excess of the number of even Motzkin n-paths (A107587) over the odd ones (A343386).
%F A359364 Sum_{k=0..n} Sum_{j=0..k} M(n, j) = A189912(n).
%F A359364 Sum_{k=0..n} Sum_{j=0..k} M(n, n-j) = modified A025179(n).
%F A359364 For a recursion see the Python program.
%e A359364 Triangle M(n, k) starts:
%e A359364 [0] 1;
%e A359364 [1] 1, 0;
%e A359364 [2] 1, 0,  1;
%e A359364 [3] 1, 0,  3, 0;
%e A359364 [4] 1, 0,  6, 0,   2;
%e A359364 [5] 1, 0, 10, 0,  10, 0;
%e A359364 [6] 1, 0, 15, 0,  30, 0,   5;
%e A359364 [7] 1, 0, 21, 0,  70, 0,  35, 0;
%e A359364 [8] 1, 0, 28, 0, 140, 0, 140, 0,  14;
%e A359364 [9] 1, 0, 36, 0, 252, 0, 420, 0, 126, 0;
%p A359364 CatalanNumber := n -> binomial(2*n, n)/(n + 1):
%p A359364 M := (n, k) -> ifelse(irem(k, 2) = 1, 0, CatalanNumber(k/2)*binomial(n, k)):
%p A359364 for n from 0 to 9 do seq(M(n, k), k = 0..n) od;
%p A359364 # Alternative, as coefficients of polynomials:
%p A359364 p := n -> hypergeom([(1 - n)/2, -n/2], [2], (2*x)^2):
%p A359364 seq(print(seq(coeff(simplify(p(n)), x, k), k = 0..n)), n = 0..9);
%p A359364 # Using the exponential generating function:
%p A359364 egf := exp(x)*BesselI(1, 2*x*t)/(x*t): ser:= series(egf, x, 11):
%p A359364 seq(print(seq(coeff(simplify(n!*coeff(ser, x, n)), t, k), k = 0..n)), n = 0..9);
%o A359364 (Python)
%o A359364 from functools import cache
%o A359364 @cache
%o A359364 def M(n: int, k: int) -> int:
%o A359364     if k %  2: return 0
%o A359364     if n <  3: return 1
%o A359364     if n == k: return (2 * (n - 1) * M(n - 2, n - 2)) // (n // 2 + 1)
%o A359364     return (M(n - 1, k) * n) // (n - k)
%o A359364 for n in range(10): print([M(n, k) for k in range(n + 1)])
%Y A359364 Variants: A055151, A080159, A097610, A107131.
%Y A359364 Columns M(n, 2*k): A000012, A000217, A034827, A000910, A088625, A088626, A213380.
%Y A359364 Cf. A001006 (Motzkin numbers), A026300 (Motzkin gf. triangle), A126120 (aerated Catalan), A000108 (Catalan).
%Y A359364 Cf. A138364, A107587, A002457, A002522, A025179, A025235, A056107, A014531, A023426, A091147, A189912, A343386, A343773, A359647, A359649.
%K A359364 nonn,tabl
%O A359364 0,9
%A A359364 _Peter Luschny_, Jan 09 2023