This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359365 #14 Dec 30 2022 11:23:53 %S A359365 1,1,2,6,72,240,3600,75600,1411200,10160640,457228800,4191264000, %T A359365 184415616000,2054916864000,12466495641600,1308982042368000, %U A359365 314155690168320000,14241724620963840000,2178983867007467520000,37260624125827694592000,337119932567012474880000 %N A359365 a(n) = lcm([ n!*binomial(n-1, m-1) / m! for m = 1..n ]) with a(0) = 1. %C A359365 The lcm of the rows of the unsigned Lah triangle (for k >= 1). %H A359365 Michael De Vlieger, <a href="/A359365/b359365.txt">Table of n, a(n) for n = 0..390</a> %p A359365 # Maple has the convention integer lcm() = 1, which covers the case n = 0. %p A359365 a := n -> ilcm(seq(n!*binomial(n-1, m-1) / m!, m = 1..n)): %p A359365 seq(a(n), n = 0..20); %t A359365 {1}~Join~Table[LCM @@ Array[n!*Binomial[n - 1, # - 1]/#! &, n], {n, 20}] (* _Michael De Vlieger_, Dec 30 2022 *) %o A359365 (Python) %o A359365 from functools import cache %o A359365 from sympy import lcm %o A359365 def A359365 (n: int) -> int: %o A359365 @cache %o A359365 def l(n: int) -> list[int]: %o A359365 if n == 0: return [1] %o A359365 row: list[int] = l(n - 1) + [1] %o A359365 row[0] = 0 %o A359365 for k in range(n - 1, 0, -1): %o A359365 row[k] = row[k] * (n + k - 1) + row[k - 1] %o A359365 return row %o A359365 return lcm(l(n)[1:]) %o A359365 print([A359365(n) for n in range(21)]) %o A359365 (PARI) a(n) = lcm(vector(n, m, n!*binomial(n-1, m-1) / m!)); \\ _Michel Marcus_, Dec 30 2022 %Y A359365 Cf. A271703 (unsigned Lah numbers), A103505 (gcd counterpart). %K A359365 nonn %O A359365 0,3 %A A359365 _Peter Luschny_, Dec 30 2022