cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359371 Nonmultiples of 4 that have an even number of prime factors (with multiplicity).

This page as a plain text file.
%I A359371 #19 May 20 2025 12:24:29
%S A359371 1,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,54,55,57,58,62,65,
%T A359371 69,74,77,81,82,85,86,87,90,91,93,94,95,106,111,115,118,119,121,122,
%U A359371 123,126,129,133,134,135,141,142,143,145,146,150,155,158,159,161,166,169,177,178,183,185,187,189
%N A359371 Nonmultiples of 4 that have an even number of prime factors (with multiplicity).
%C A359371 1, and semiprimes other than 4, multiplied by a product of 0 or more odd semiprimes. - _Robert Israel_, Dec 28 2022
%H A359371 Harvey P. Dale, <a href="/A359371/b359371.txt">Table of n, a(n) for n = 1..1000</a>
%F A359371 {k | A008836(k) > 0 and A010873(k) > 0}.
%p A359371 select(t -> numtheory:-bigomega(t)::even, [seq(seq(4*i+j, j=1..3),i=0..100)]); # _Robert Israel_, Dec 28 2022
%t A359371 Select[Range[200], And[LiouvilleLambda[#] > 0, ! Divisible[#, 4]] &] (* _Michael De Vlieger_, Dec 28 2022 *)
%t A359371 Select[Range[200],Mod[#,4]!=0&&EvenQ[PrimeOmega[#]]&] (* _Harvey P. Dale_, May 20 2025 *)
%o A359371 (PARI) isA359371(n) = A359370(n);
%Y A359371 Intersection of A028260 and A042968.
%Y A359371 Setwise difference A042968 \ A359373.
%Y A359371 Positions of positive terms in A358839.
%Y A359371 Cf. A001222, A008836, A010873, A046337 (subsequence), A166486, A359370 (characteristic function).
%K A359371 nonn
%O A359371 1,2
%A A359371 _Antti Karttunen_, Dec 28 2022