cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359382 a(n) = number of k < t such that rad(k) = rad(t) and k does not divide t, where t = A360768(n) and rad(k) = A007947(k).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 2, 1, 1, 1, 4, 2, 2, 4, 1, 1, 1, 1, 3, 1, 3, 2, 8, 1, 2, 1, 7, 2, 1, 2, 5, 2, 1, 1, 3, 3, 1, 6, 1, 1, 5, 5, 4, 5, 1, 1, 4, 8, 3, 3, 1, 2, 1, 4, 2, 3, 5, 10, 2, 1, 3, 3, 1, 1, 1, 6, 1, 3, 7, 1, 1, 7, 3, 14, 3, 6, 3, 2, 1, 1, 2, 7, 2, 1, 1, 2, 2, 8, 4, 6, 4, 8, 1, 1, 2, 1, 6, 9, 2, 1
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

This sequence contains nonzero values in A355432.

Examples

			Table relating a(n) to b(n) = A360768(n) and row n of A359929.
n  b(n)   row n of A359929   a(n)
---------------------------------
1   18    12                   1
2   24    18                   1
3   36    24                   1
4   48    18, 36               2
5   50    20, 40               2
6   54    12, 24, 36, 48       4
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    s = Select[Range[671], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@
          {#, FactorInteger[#][[All, 1]]} &];
    Map[Function[{n, k},
        Count[TakeWhile[s, # < n &],
          _?(And[rad[#] == k, ! Divisible[n, #]] &)]] @@ {#, rad[#]} &, t]

Formula

a(n) = A355432(A360768(n)) = length of row n in A359929.