A359382 a(n) = number of k < t such that rad(k) = rad(t) and k does not divide t, where t = A360768(n) and rad(k) = A007947(k).
1, 1, 1, 2, 2, 4, 2, 1, 1, 1, 4, 2, 2, 4, 1, 1, 1, 1, 3, 1, 3, 2, 8, 1, 2, 1, 7, 2, 1, 2, 5, 2, 1, 1, 3, 3, 1, 6, 1, 1, 5, 5, 4, 5, 1, 1, 4, 8, 3, 3, 1, 2, 1, 4, 2, 3, 5, 10, 2, 1, 3, 3, 1, 1, 1, 6, 1, 3, 7, 1, 1, 7, 3, 14, 3, 6, 3, 2, 1, 1, 2, 7, 2, 1, 1, 2, 2, 8, 4, 6, 4, 8, 1, 1, 2, 1, 6, 9, 2, 1
Offset: 1
Keywords
Examples
Table relating a(n) to b(n) = A360768(n) and row n of A359929. n b(n) row n of A359929 a(n) --------------------------------- 1 18 12 1 2 24 18 1 3 36 24 1 4 48 18, 36 2 5 50 20, 40 2 6 54 12, 24, 36, 48 4
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Scatterplot of a(n), n = 1..2^16, highlighting records (A360768(n) in A360589) in red.
Crossrefs
Programs
-
Mathematica
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; s = Select[Range[671], Nor[SquareFreeQ[#], PrimePowerQ[#]] &]; t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]; Map[Function[{n, k}, Count[TakeWhile[s, # < n &], _?(And[rad[#] == k, ! Divisible[n, #]] &)]] @@ {#, rad[#]} &, t]
Comments