A359387 Primes p such that the smallest prime factor of (2^(p-1)-1)/(3*p) is greater than p.
11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1847, 1907, 2027, 2039, 2063, 2099, 2207, 2243, 2447, 2459, 2579, 2687, 2699
Offset: 1
Keywords
Examples
7 is not a term since for p=7, (2^(p-1)-1)/(3*p) = (2^6-1)/(3*7) = 3 and 3 is not greater than 7. 11 is a term since for p=11, (2^(p-1)-1)/(3*p) = (2^10-1)/(3*11) = 31, which is greater than 11. 23 is a term since (2^22-1)/(3*23) = 60787 = 89*683 and 89 is greater than 23.
Programs
-
Mathematica
q[p_] := AllTrue[Range[p], ! PrimeQ[#] || PowerMod[2, p - 1, 3*p*#] > 1 &]; Select[Prime[Range[4, 400]], q] (* Amiram Eldar, Dec 31 2022 *)
-
PARI
isok(p) = (p%12==11 && isprime(p)) || return(0); forprime(div=5, p-1, if(Mod(2,div)^(p-1)==1, return(0))); 1;
Comments