This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359388 #33 Jan 01 2023 14:49:39 %S A359388 1,0,1,0,1,1,1,2,2,4,5,7,11,15,24,33,50,73,105,159,229,342,501,738, %T A359388 1094,1604,2378,3499,5166,7627,11243,16610,24494,36165,53376,78775, %U A359388 116301,171642,253398,374034,552139,815079,1203166,1776174,2621938,3870572,5713798,8434744 %N A359388 a(n) is the number of compositions of n into prime parts, with the 1st part equal to 2, the 2nd part less than or equal to 3, ..., and the k-th part less than or equal to prime(k), and so on. %H A359388 Alois P. Heinz, <a href="/A359388/b359388.txt">Table of n, a(n) for n = 0..4000</a> %H A359388 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A359388 G.f.: Sum_{m>=0} Product_{k=1..m} Sum_{i=1..k} x^prime(i). %F A359388 a(n) ~ c*A078974^n, where c = 0.094587447... . %e A359388 The 7 such compositions of n = 11 are: %e A359388 [ 1] (2, 2, 2, 2, 3); %e A359388 [ 2] (2, 2, 2, 3, 2); %e A359388 [ 3] (2, 2, 3, 2, 2); %e A359388 [ 4] (2, 3, 2, 2, 2); %e A359388 [ 5] (2, 2, 2, 5); %e A359388 [ 6] (2, 2, 5, 2); %e A359388 [ 7] (2, 3, 3, 3). %p A359388 b:= proc(n, i) option remember; `if`(n=0, 1, add( %p A359388 b(n-ithprime(j), i+1), j=1..min(i, numtheory[pi](n)))) %p A359388 end: %p A359388 a:= n-> b(n, 1): %p A359388 seq(a(n), n=0..50); # _Alois P. Heinz_, Dec 29 2022 %t A359388 a[n_]:=Coefficient[Expand[Sum[Product[Sum[x^Prime[i], {i, k}], {k,m}], {m, 0,Floor[n/2]}]],x,n]; Array[a,48,0] %Y A359388 Cf. A000040, A004526, A023360, A078974, A326178, A359328. %K A359388 nonn %O A359388 0,8 %A A359388 _Stefano Spezia_, Dec 29 2022