This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359398 #11 Jan 02 2023 00:06:07 %S A359398 0,1,2,8,32,158,833,4755,28389,176542,1131055,7432876,49873477, %T A359398 340658595,2362652648,16605707901,118082160358,848399575321, %U A359398 6152038125538,44981009272740,331344933928536,2457372361637286,18337490246234464,137612955519565773,1038076541372187991 %N A359398 Number of unlabeled trees covering 2n nodes, half of which are leaves. %H A359398 Andrew Howroyd, <a href="/A359398/b359398.txt">Table of n, a(n) for n = 1..100</a> %H A359398 Gus Wiseman, <a href="/A359398/a359398.png">The a(4) = 8 trees covering 8 nodes, half of which are leaves.</a> %F A359398 a(n) = A055290(2*n, n). - _Andrew Howroyd_, Jan 01 2023 %Y A359398 Left of central column of A055290. %Y A359398 The labeled version is the left of central column of A055314. %Y A359398 The rooted version is A185650. %Y A359398 For n+1 leaves we have A358107. %Y A359398 The labeled version is A358732. %Y A359398 A000272 counts trees, bisection A163395, unlabeled A000055. %Y A359398 A001187 counts connected graphs, unlabeled A001349. %Y A359398 A006125 counts graphs, unlabeled A000088. %Y A359398 A006129 counts covering graphs, unlabeled A002494. %Y A359398 A014068 counts graphs with n vertices and n-1 edges, unlabeled A001433. %K A359398 nonn %O A359398 1,3 %A A359398 _Gus Wiseman_, Jan 01 2023 %E A359398 Terms a(12) and beyond from _Andrew Howroyd_, Jan 01 2023