This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359400 #47 Mar 23 2024 20:26:12 %S A359400 1,0,1,0,3,2,1,0,6,5,4,3,3,2,1,0,10,9,8,7,7,6,5,4,6,5,4,3,3,2,1,0,15, %T A359400 14,13,12,12,11,10,9,11,10,9,8,8,7,6,5,10,9,8,7,7,6,5,4,6,5,4,3,3,2,1, %U A359400 0,21,20,19,18,18,17,16,15,17,16,15,14,14,13 %N A359400 Sum of positions of zeros in the reversed binary expansion of n, where positions in a sequence are read starting with 1 from the left. %F A359400 a(n) = binomial(A029837(n)+1, 2) - A029931(n), for n>0. %e A359400 The reversed binary expansion of 100 is (0,0,1,0,0,1,1), with zeros at positions {1,2,4,5}, so a(100) = 12. %t A359400 Table[Total[Join@@Position[Reverse[IntegerDigits[n,2]],0]],{n,0,100}] %o A359400 (C) %o A359400 long A359400(long n) { %o A359400 long result = 0, counter = 1; %o A359400 do { %o A359400 if (n % 2 == 0) %o A359400 result += counter; %o A359400 counter++; %o A359400 n /= 2; %o A359400 } while (n > 0); %o A359400 return result; } // _Frank Hollstein_, Jan 06 2023 %o A359400 (Python) %o A359400 def a(n): return sum(i for i, bi in enumerate(bin(n)[:1:-1], 1) if bi=='0') %o A359400 print([a(n) for n in range(78)]) # _Michael S. Branicky_, Jan 09 2023 %Y A359400 The number of zeros is A023416, partial sums A059015. %Y A359400 Row sums of A368494. %Y A359400 For positions of 1's we have A029931, non-reversed A230877. %Y A359400 The non-reversed version is A359359. %Y A359400 A003714 lists numbers with no successive binary indices. %Y A359400 A030190 gives binary expansion, reverse A030308. %Y A359400 A039004 lists the positions of zeros in A345927. %Y A359400 Cf. A000120, A048793, A069010, A070939, A073642, A328594, A328595, A344618, A359402, A359495. %K A359400 nonn,base %O A359400 0,5 %A A359400 _Gus Wiseman_, Jan 05 2023