cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359418 Unitary phi-practical (A286906) whose unitary divisors have distinct values of the unitary totient function uphi (A047994).

Original entry on oeis.org

1, 3, 15, 105, 165, 195, 255, 1155, 1785, 1995, 2145, 2415, 2805, 3045, 3135, 3255, 3315, 3705, 3795, 3885, 4305, 4485, 4515, 4785, 4845, 4935, 5115, 5565, 5655, 5865, 6045, 6105, 6195, 6405, 7035, 7095, 7215, 7395, 7455, 7665, 7755, 7905, 7995, 8295, 8385, 8715
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2022

Keywords

Comments

A unitary phi-practical number k is a number k such that each number in the range 1..k is a subsum of a the multiset {uphi(d) : d | k, gcd(d, k/d) = 1}. This sequence is restricted to cases in which all the values in this multiset are distinct.
Are all the terms above 3 divisible by 5?

Crossrefs

Intersection of A286906 and A348004.

Programs

  • Mathematica
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]];
    uDivisors[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; uPhiPracticalQ[n_] := If[n < 1, False, If[n == 1, True, (lst = Sort @ Map[uphi, uDivisors[n]]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]];
    Select[Range[9000], UnsameQ @@ uphi /@ Divisors[#] && uPhiPracticalQ[#] &]