cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359419 Nonsquarefree numbers that are both phi-practical and unitary phi-practical.

Original entry on oeis.org

12, 60, 84, 120, 132, 156, 240, 420, 660, 780, 840, 924, 1020, 1050, 1092, 1140, 1320, 1380, 1428, 1560, 1596, 1680, 1716, 1740, 1860, 1932, 2040, 2100, 2220, 2244, 2280, 2436, 2460, 2508, 2580, 2604, 2640, 2652, 2760, 2820, 2940, 2964, 3036, 3108, 3120, 3180
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2022

Keywords

Comments

The squarefree numbers (A005117) are excluded from this sequence since every squarefree phi-practical number is also a unitary phi-practical number.
The least odd term in this sequence is a(104) = 8085.

Crossrefs

Intersection of A013929, A260653 and A286906.
Cf. A005117.

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n == 1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok = True;  Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)];
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]];
    uDivisors[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
    uPhiPracticalQ[n_] := If[n < 1, False, If[n == 1, True, (lst = Sort@Map[uphi, uDivisors[n]]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]];  (* Frank M Jackson's code at A260653 *)
    Select[Range[3200], ! SquareFreeQ[#] && phiPracticalQ[#] && uPhiPracticalQ[#] &]