cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359423 The least common multiple of the arithmetic derivative and the primorial base exp-function.

This page as a plain text file.
%I A359423 #10 Jan 02 2023 21:55:50
%S A359423 0,0,3,6,36,18,5,10,60,30,315,90,400,50,225,600,7200,450,2625,250,
%T A359423 3000,750,14625,2250,27500,1250,1875,33750,180000,11250,217,14,1680,
%U A359423 42,1197,252,420,70,105,1680,21420,630,7175,350,8400,13650,1575,3150,14000,1750,7875,10500,63000,15750,354375,70000
%N A359423 The least common multiple of the arithmetic derivative and the primorial base exp-function.
%H A359423 Antti Karttunen, <a href="/A359423/b359423.txt">Table of n, a(n) for n = 0..11550</a>
%H A359423 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A359423 a(n) = lcm(A003415(n), A276086(n)).
%F A359423 a(n) = A358669(n) / A327858(n).
%e A359423 For n=32, we have A003415(32) = 80 and A276086(32) = 21, therefore a(32) = lcm(80,21) = 1680.
%e A359423 For n=39, we have A003415(39) = 16 and A276086(39) = 210, therefore a(39) = lcm(16,210) = 1680.
%o A359423 (PARI)
%o A359423 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A359423 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A359423 A359423(n) = lcm(A003415(n), A276086(n));
%Y A359423 Cf. A003415, A276086, A327858, A358669, A359424 [= a(n) mod 60].
%Y A359423 Cf. A016825 (positions of odd terms), A042965 (of even terms), A327864 (of multiples of 4).
%K A359423 nonn,base
%O A359423 0,3
%A A359423 _Antti Karttunen_, Jan 02 2023