This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359423 #10 Jan 02 2023 21:55:50 %S A359423 0,0,3,6,36,18,5,10,60,30,315,90,400,50,225,600,7200,450,2625,250, %T A359423 3000,750,14625,2250,27500,1250,1875,33750,180000,11250,217,14,1680, %U A359423 42,1197,252,420,70,105,1680,21420,630,7175,350,8400,13650,1575,3150,14000,1750,7875,10500,63000,15750,354375,70000 %N A359423 The least common multiple of the arithmetic derivative and the primorial base exp-function. %H A359423 Antti Karttunen, <a href="/A359423/b359423.txt">Table of n, a(n) for n = 0..11550</a> %H A359423 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A359423 a(n) = lcm(A003415(n), A276086(n)). %F A359423 a(n) = A358669(n) / A327858(n). %e A359423 For n=32, we have A003415(32) = 80 and A276086(32) = 21, therefore a(32) = lcm(80,21) = 1680. %e A359423 For n=39, we have A003415(39) = 16 and A276086(39) = 210, therefore a(39) = lcm(16,210) = 1680. %o A359423 (PARI) %o A359423 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1])); %o A359423 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A359423 A359423(n) = lcm(A003415(n), A276086(n)); %Y A359423 Cf. A003415, A276086, A327858, A358669, A359424 [= a(n) mod 60]. %Y A359423 Cf. A016825 (positions of odd terms), A042965 (of even terms), A327864 (of multiples of 4). %K A359423 nonn,base %O A359423 0,3 %A A359423 _Antti Karttunen_, Jan 02 2023