This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359440 #45 Jan 08 2023 13:30:18 %S A359440 0,0,0,1,2,2,1,0,0,4,0,0,2,0,0,0,1,0,0,0,0,1,0,0,0,1,2,1,0,1,0,0,0,2, %T A359440 0,0,0,5,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,0,2,0,0,0,0, %U A359440 0,0,0,1,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0 %N A359440 A measure of the extent of reflective symmetry in the pattern of primes around each prime gap: a(n) is the largest k such that prime(n-j) + prime(n+1+j) has the same value for each j in 0..k. %C A359440 If the prime gaps above and below a prime p have the same length, p is called a balanced prime (see A006562). Likewise, if the prime gaps above and below the n-th prime gap have the same length, this gap might be called a balanced prime gap. These gaps correspond to nonzero terms a(n). Similarly, if a(n) >= 2, the n-th prime gap is the equivalent of a doubly balanced prime (A051795), and so on. - _Peter Munn_, Jan 08 2023 %F A359440 a(n) = min( {n-1} U {k : 0 <= k <= n-2 and prime(n-k-1) + prime(n+k+2) <> prime(n) + prime(n+1)} ). - _Peter Munn_, Jan 08 2023 %e A359440 For n = 1, prime(1) + prime(2) = 2 + 3 = 5; "prime(0)" does not exist, so a(1) = 0. %e A359440 For n = 4: %e A359440 j = 0: prime(4) + prime(5) = 7 + 11 = 18; %e A359440 j = 1: prime(3) + prime(6) = 5 + 13 = 18; %e A359440 j = 2: prime(2) + prime(7) = 3 + 17 = 20 != 18, so a(4) = 1. %e A359440 For n = 5: %e A359440 j = 0: prime(5) + prime(6) = 11 + 13 = 24; %e A359440 j = 1: prime(4) + prime(7) = 7 + 17 = 24; %e A359440 j = 2: prime(3) + prime(8) = 5 + 19 = 24; %e A359440 j = 3: prime(2) + prime(9) = 3 + 23 = 26 != 24, so a(5) = 2. %o A359440 (Python) %o A359440 import sympy %o A359440 offset = 1 %o A359440 N = 100 %o A359440 l = [] %o A359440 for n in range(offset,N+1): %o A359440 j = 0 %o A359440 first_sum = sympy.prime(n-j)+sympy.prime(n+j+1) %o A359440 while (n-j) > 1: %o A359440 j += 1 %o A359440 sum = sympy.prime(n-j)+sympy.prime(n+j+1) %o A359440 if sum != first_sum: %o A359440 break %o A359440 l.append(max(0,j-1)) %o A359440 print(l) %Y A359440 Cf. A000040, A006562, A051795, A055381, A081235. %K A359440 nonn %O A359440 1,5 %A A359440 _Alexandre Herrera_, Jan 01 2023 %E A359440 Introductory phrase added to name by _Peter Munn_, Jan 08 2023