cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359442 a(n) = Sum_{d|n} d^(n + 1 - d - n/d).

This page as a plain text file.
%I A359442 #50 Aug 09 2023 00:53:37
%S A359442 1,2,2,4,2,15,2,74,83,643,2,12635,2,117715,397188,2359426,2,103572204,
%T A359442 2,1260918355,13841818644,25937425627,2,5612318393211,152587890627,
%U A359442 23298085126579,1853020231898564,2422197090649523,2,1032944452284531101,2,10376297939508166658
%N A359442 a(n) = Sum_{d|n} d^(n + 1 - d - n/d).
%H A359442 Seiichi Manyama, <a href="/A359442/b359442.txt">Table of n, a(n) for n = 1..605</a>
%F A359442 G.f.: Sum_{k>0} x^k / (1 - (k * x)^k / k).
%F A359442 If p is prime, a(p) = 2.
%t A359442 a[n_] := DivisorSum[n, #^(n + 1 - # - n/#) &]; Array[a, 32] (* _Amiram Eldar_, Aug 09 2023 *)
%o A359442 (PARI) a(n) = sumdiv(n, d, d^(n+1-d-n/d));
%o A359442 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k/k)))
%Y A359442 Cf. A294645, A342628, A342629, A342677, A359700.
%K A359442 nonn
%O A359442 1,2
%A A359442 _Seiichi Manyama_, Jan 14 2023