This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359447 #10 Jan 06 2023 10:43:43 %S A359447 -1,-1,152,2224,9056,108736,-1,4532992,34674176,268684288,2280249344, %T A359447 18693763072,138890141696,1111848828928,8803419521024,70375767212032, %U A359447 564861779443712,4507018424221696,36030079546425344,288238419152207872,2305850719072157696,18446757709572210688,147573952867129622528 %N A359447 a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd prime, or -1 if there is no such number. %C A359447 a(n) is the least term of A086119 such that a(n)/2^n is an odd prime, or -1 if there is no such term. %C A359447 Since p^3 + q^3 = (p+q)*(p^2 - p*q + q^2), we must have p+q = 2^n, and p^2 - p*q + q^2 an odd prime. %C A359447 Is a(n) > 0 for all n > 7? %e A359447 a(3) = 152 because 3^3 + 5^3 = 152 = 2^3 * 19, 3 and 5 are primes and 19 is odd, and no smaller number works. %p A359447 f:= proc(n) local p,q,t; %p A359447 t:= 2^n; p:= nextprime(t/2); %p A359447 while p > 2 do %p A359447 p:= prevprime(p); %p A359447 q:= t - p; %p A359447 if isprime(q) and isprime(p^2 - p*q + q^2) then return p^3 + q^3 fi %p A359447 od; %p A359447 -1 %p A359447 end proc: %p A359447 map(f, [$1..20]); %Y A359447 Cf. A086119, A359448. %K A359447 sign %O A359447 1,3 %A A359447 _Robert Israel_, Jan 01 2023