cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359448 a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd number.

This page as a plain text file.
%I A359448 #15 Jul 09 2024 19:12:25
%S A359448 35,54,468,152,16,9056,81088,527744,4532992,33900032,268684288,
%T A359448 2148866048,17185288192,137439174656,1099611160576,8797884612608,
%U A359448 70369850097664,562950041894912,4503607335190528,36028810622664704,288230406982991872,2305843633483415552,18446744212436156416,147573952867129622528
%N A359448 a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd number.
%C A359448 a(n) is the least member k of A086119 such that A007814(k) = n.
%C A359448 a(n) <= A359447(n) if A359447(n) > 0.
%C A359448 Since p^3 + q^3 = (p+q)*(p^2 - p*q + q^2), except for n=4 we must have A007814(p+q) = n.
%C A359448 There is no analogous sequence for squares, because if p and q are odd primes p^2 + q^2 == 2 (mod 4).
%H A359448 Robert Israel, <a href="/A359448/b359448.txt">Table of n, a(n) for n = 0..1000</a>
%e A359448 a(0) = 35 = 2^3 + 3^3 = 2^0 * 35 with 2 and 3 prime and 35 odd.
%e A359448 a(1) = 54 = 3^3 + 3^3 = 2^1 * 27 with 3 and 3 prime and 27 odd.
%e A359448 a(2) = 468 = 5^3 + 7^3 = 2^2 * 117 with 5 and 7 prime and 117 odd.
%e A359448 a(3) = 152 = 3^3 + 5^3 = 2^3 * 19 with 3 and 5 prime and 19 odd.
%e A359448 a(4) = 16 = 2^3 + 2^3 = 2^4 * 1 with 2 and 2 prime and 1 odd.
%p A359448 f:= proc(n) local p,q,b,t,r;
%p A359448   r:= infinity;
%p A359448   for b from 1 by 2 while 2^(3*n-2)*b^3 < r do
%p A359448     t:= 2^n*b;
%p A359448     p:= nextprime(t/2);
%p A359448     while p > 3 do
%p A359448       p:= prevprime(p);
%p A359448       q:= t-p;
%p A359448       if p^3 + q^3 > r then break fi;
%p A359448       if isprime(q) then r:= p^3 + q^3; break fi;
%p A359448     od
%p A359448   od;
%p A359448     r
%p A359448 end proc:
%p A359448 f(0):= 35: f(4):= 16:
%p A359448 map(f, [$0..30]);
%Y A359448 Cf. A007814, A086119, A359447.
%K A359448 nonn
%O A359448 0,1
%A A359448 _Robert Israel_, Jan 01 2023