This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359448 #15 Jul 09 2024 19:12:25 %S A359448 35,54,468,152,16,9056,81088,527744,4532992,33900032,268684288, %T A359448 2148866048,17185288192,137439174656,1099611160576,8797884612608, %U A359448 70369850097664,562950041894912,4503607335190528,36028810622664704,288230406982991872,2305843633483415552,18446744212436156416,147573952867129622528 %N A359448 a(n) is the least number that is the sum of two cubes of primes and is 2^n times an odd number. %C A359448 a(n) is the least member k of A086119 such that A007814(k) = n. %C A359448 a(n) <= A359447(n) if A359447(n) > 0. %C A359448 Since p^3 + q^3 = (p+q)*(p^2 - p*q + q^2), except for n=4 we must have A007814(p+q) = n. %C A359448 There is no analogous sequence for squares, because if p and q are odd primes p^2 + q^2 == 2 (mod 4). %H A359448 Robert Israel, <a href="/A359448/b359448.txt">Table of n, a(n) for n = 0..1000</a> %e A359448 a(0) = 35 = 2^3 + 3^3 = 2^0 * 35 with 2 and 3 prime and 35 odd. %e A359448 a(1) = 54 = 3^3 + 3^3 = 2^1 * 27 with 3 and 3 prime and 27 odd. %e A359448 a(2) = 468 = 5^3 + 7^3 = 2^2 * 117 with 5 and 7 prime and 117 odd. %e A359448 a(3) = 152 = 3^3 + 5^3 = 2^3 * 19 with 3 and 5 prime and 19 odd. %e A359448 a(4) = 16 = 2^3 + 2^3 = 2^4 * 1 with 2 and 2 prime and 1 odd. %p A359448 f:= proc(n) local p,q,b,t,r; %p A359448 r:= infinity; %p A359448 for b from 1 by 2 while 2^(3*n-2)*b^3 < r do %p A359448 t:= 2^n*b; %p A359448 p:= nextprime(t/2); %p A359448 while p > 3 do %p A359448 p:= prevprime(p); %p A359448 q:= t-p; %p A359448 if p^3 + q^3 > r then break fi; %p A359448 if isprime(q) then r:= p^3 + q^3; break fi; %p A359448 od %p A359448 od; %p A359448 r %p A359448 end proc: %p A359448 f(0):= 35: f(4):= 16: %p A359448 map(f, [$0..30]); %Y A359448 Cf. A007814, A086119, A359447. %K A359448 nonn %O A359448 0,1 %A A359448 _Robert Israel_, Jan 01 2023