This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359478 #30 May 10 2023 04:30:49 %S A359478 1,-2,-5,-3,-8,1,-6,-6,-6,9,-2,-8,-21,0,15,15,-2,-2,-21,-31,-10,23,0, %T A359478 0,0,39,39,25,-4,-49,-80,-80,-47,4,39,39,2,59,98,98,57,-6,-49,-71,-71, %U A359478 -2,-49,-49,-49,-49,2,-24,-77,-77,-22,-22,35,122,63,93,32,125,125,125,190,91 %N A359478 a(1) = 1; a(n) = -Sum_{k=2..n} k * a(floor(n/k)). %H A359478 Seiichi Manyama, <a href="/A359478/b359478.txt">Table of n, a(n) for n = 1..10000</a> %F A359478 Sum_{k=1..n} k * a(floor(n/k)) = 0 for n > 1. %F A359478 G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k * (1 - x^k) * A(x^k). %t A359478 s[n_] := n * MoebiusMu[n] - If[OddQ[n], 0, MoebiusMu[n/2]*n/2]; Accumulate[Array[s, 100]] (* _Amiram Eldar_, May 09 2023 *) %o A359478 (Python) %o A359478 from functools import lru_cache %o A359478 @lru_cache(maxsize=None) %o A359478 def A359478(n): %o A359478 if n <= 1: %o A359478 return 1 %o A359478 c, j = 0, 2 %o A359478 k1 = n//j %o A359478 while k1 > 1: %o A359478 j2 = n//k1 + 1 %o A359478 c -= (j2*(j2-1)-j*(j-1)>>1)*A359478(k1) %o A359478 j, k1 = j2, n//j2 %o A359478 return c-(n*(n+1)-(j-1)*j>>1) # _Chai Wah Wu_, Mar 31 2023 %Y A359478 Partial sums of A359484. %Y A359478 Cf. A092149, A360390, A360658. %Y A359478 Cf. A359479. %K A359478 sign,look %O A359478 1,2 %A A359478 _Seiichi Manyama_, Mar 31 2023