This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359484 #32 Jun 09 2023 23:59:03 %S A359484 1,-3,-3,2,-5,9,-7,0,0,15,-11,-6,-13,21,15,0,-17,0,-19,-10,21,33,-23, %T A359484 0,0,39,0,-14,-29,-45,-31,0,33,51,35,0,-37,57,39,0,-41,-63,-43,-22,0, %U A359484 69,-47,0,0,0,51,-26,-53,0,55,0,57,87,-59,30,-61,93,0,0,65,-99,-67,-34,69,-105,-71,0 %N A359484 a(n) = n * mu(n) if n is odd, otherwise n * mu(n) - (n/2) * mu(n/2). %H A359484 Seiichi Manyama, <a href="/A359484/b359484.txt">Table of n, a(n) for n = 1..10000</a> %F A359484 a(n) = A055615(n) if n is odd, otherwise A055615(n) - A055615(n/2). %F A359484 a(n) is multiplicative with a(2)= -3, a(4)= 2, a(2^e)= 0 if e>2. a(p)= -p, a(p^e)= 0 if e>1, p>2. %F A359484 a(1) = 1, a(2) = -3; a(n) = -n * Sum_{d|n, d < n} a(d) / d. %F A359484 G.f. A(x) satisfies x * (1 - x) = Sum_{k>=1} k * A(x^k). %F A359484 a(n) = n*mu(n)-n*mu(n*2^(n mod 2)/2)*((n+1) mod 2)/2. - _Wesley Ivan Hurt_, Jun 09 2023 %t A359484 a[n_] := n * MoebiusMu[n] - If[OddQ[n], 0, MoebiusMu[n/2]*n/2]; Array[a, 100] (* _Amiram Eldar_, May 09 2023 *) %o A359484 (PARI) a(n) = n*moebius(n)-if(n%2, 0, n/2*moebius(n/2)); %Y A359484 Partial sums give A359478. %Y A359484 Cf. A008683, A055615, A358276. %Y A359484 Cf. A092673, A359485, A359531. %K A359484 sign,mult %O A359484 1,2 %A A359484 _Seiichi Manyama_, Mar 31 2023