A359492 a(n) is the least number of the form p^2 + q^2 - 2 for primes p and q that is an odd prime times 2^n, or -1 if there is no such number.
11, 6, -1, 56, 48, 96, 192, 384, 2816, 1536, 109568, 10582016, 12288, 7429922816, 64176128, 4318724096, 196608, 60486975488, 9388028592128, 849566088298496, 214058289594368, 896029329195008
Offset: 0
Examples
a(4) = 48 = 3*2^4 = 5^2 + 5^2 - 2.
Programs
-
Maple
f:= proc(n) local b,t,s,x,y; t:= 2^n; b:= 2; do b:= nextprime(b); if member(3, numtheory:-factorset(b*t+2) mod 4) then next fi; if ormap(s -> isprime(subs(s,x)) and isprime(subs(s,y)), [isolve(x^2+y^2-2=b*t)]) then return b*t fi od; end proc: f(2):= -1: map(f, [$0..18]);
Extensions
a(19)-a(21) from Daniel Suteu, Jan 05 2023
Comments