This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359496 #12 Mar 07 2023 19:04:19 %S A359496 2,4,6,8,10,12,13,14,16,18,20,22,24,25,26,28,29,30,32,34,36,38,40,41, %T A359496 42,44,46,48,49,50,52,53,54,56,57,58,59,60,61,62,64,66,68,72,74,76,80, %U A359496 81,82,84,86,88,89,90,92,94,96,97,98,100,101,102,104,105,106 %N A359496 Nonnegative integers whose sum of positions of 1's in their binary expansion is less than the sum of positions of 1's in their reversed binary expansion, where positions in a sequence are read starting with 1 from the left. %C A359496 First differs from A161602 in lacking 70, with binary expansion (1,0,0,0,1,1,0), positions of 1's 1 + 5 + 6 = 12, reversed 2 + 3 + 7 = 12. %F A359496 A230877(a(n)) < A029931(a(n)). %e A359496 The initial terms, binary expansions, and positions of 1's are: %e A359496 2: 10 ~ {2} %e A359496 4: 100 ~ {3} %e A359496 6: 110 ~ {2,3} %e A359496 8: 1000 ~ {4} %e A359496 10: 1010 ~ {2,4} %e A359496 12: 1100 ~ {3,4} %e A359496 13: 1101 ~ {1,3,4} %e A359496 14: 1110 ~ {2,3,4} %e A359496 16: 10000 ~ {5} %e A359496 18: 10010 ~ {2,5} %e A359496 20: 10100 ~ {3,5} %e A359496 22: 10110 ~ {2,3,5} %e A359496 24: 11000 ~ {4,5} %e A359496 25: 11001 ~ {1,4,5} %e A359496 26: 11010 ~ {2,4,5} %e A359496 28: 11100 ~ {3,4,5} %e A359496 29: 11101 ~ {1,3,4,5} %e A359496 30: 11110 ~ {2,3,4,5} %t A359496 Select[Range[100],Total[Accumulate[IntegerDigits[#,2]]]>Total[Accumulate[Reverse[IntegerDigits[#,2]]]]&] %o A359496 (Python 3.10+) %o A359496 from itertools import count, islice %o A359496 def A359496_gen(startvalue=0): # generator of terms >= startvalue %o A359496 return filter(lambda n:sum(i for i, j in enumerate(bin(n)[2:]) if j=='1')<<1 < n.bit_count()*(n.bit_length()-1), count(max(startvalue,0))) %o A359496 A359496_list = list(islice(A359496_gen(),20)) # _Chai Wah Wu_, Jan 19 2023 %Y A359496 The opposite version is A359401. %Y A359496 Indices of negative terms in A359495; indices of 0's are A359402. %Y A359496 A030190 gives binary expansion, reverse A030308. %Y A359496 A070939 counts binary digits. %Y A359496 A230877 adds up positions of 1's in binary expansion, reverse A029931. %Y A359496 A326669 lists numbers with integer mean position of a 1 in binary expansion. %Y A359496 A358194 counts partitions by sum of partial sums, compositions A053632. %Y A359496 Cf. A000120, A048793, A051293, A222955, A231204, A291166, A304818, A326672, A326673, A359043. %K A359496 nonn,base %O A359496 1,1 %A A359496 _Gus Wiseman_, Jan 18 2023