cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359497 Greatest positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.

This page as a plain text file.
%I A359497 #13 Jan 21 2023 22:26:51
%S A359497 1,2,3,5,7,11,13,17,19,25,29,35,49,55,77,121,91,143,169,187,221,289,
%T A359497 247,323,361,391,437,539,605,847,1331,715,1001,1573,1183,1859,2197,
%U A359497 1547,2431,2873,3179,3757,4913,3553,4199,5491,4693,6137,6859,9317,14641
%N A359497 Greatest positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.
%C A359497 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A359497 The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.
%H A359497 Andrew Howroyd, <a href="/A359497/b359497.txt">Table of n, a(n) for n = 0..500</a>
%e A359497 The terms together with their prime indices begin:
%e A359497     1: {}
%e A359497     2: {1}
%e A359497     3: {2}
%e A359497     5: {3}
%e A359497     7: {4}
%e A359497    11: {5}
%e A359497    13: {6}
%e A359497    17: {7}
%e A359497    19: {8}
%e A359497    25: {3,3}
%e A359497    29: {10}
%e A359497    35: {3,4}
%e A359497    49: {4,4}
%e A359497    55: {3,5}
%e A359497    77: {4,5}
%e A359497 The 5 numbers with weighted sum of prime indices 12, together with their prime indices:
%e A359497   20: {1,1,3}
%e A359497   27: {2,2,2}
%e A359497   33: {2,5}
%e A359497   37: {12}
%e A359497   49: {4,4}
%e A359497 Hence a(12) = 49.
%t A359497 nn=10;
%t A359497 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A359497 ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
%t A359497 seq=Table[ots[primeMS[n]],{n,1,2^nn}];
%t A359497 Table[Position[seq,k][[-1,1]],{k,0,nn}]
%o A359497 (PARI)
%o A359497 a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)),
%o A359497   my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
%o A359497   if(n==0, 1, vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n, k, n))));
%o A359497 } \\ _Andrew Howroyd_, Jan 21 2023
%Y A359497 First position of n in A304818, reverse A318283.
%Y A359497 The least instead of greatest is given by A359682, reverse A359679.
%Y A359497 The reverse version is A359683.
%Y A359497 A112798 lists prime indices, length A001222, sum A056239.
%Y A359497 A320387 counts multisets by weighted sum, zero-based A359678.
%Y A359497 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.
%Y A359497 Cf. A001248, A029931, A055932, A089633, A243055, A358194, A359043, A359676, A359681, A359755.
%K A359497 nonn
%O A359497 0,2
%A A359497 _Gus Wiseman_, Jan 15 2023
%E A359497 Terms a(21) and beyond from _Andrew Howroyd_, Jan 21 2023