This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359498 #18 Jan 23 2025 12:37:47 %S A359498 0,205,12207,180150,1345210,6698715,25491585,80090332,217992420, %T A359498 530736345,1181964355,2447218290,4768371582,8825923015,15632700405, %U A359498 26652844920,43950269320,70371105957,109764982935,167250289390,249528913410,365256258675,525472668457,744102708180 %N A359498 a(n) = ((2*n+1)^8 - 1)/32. %C A359498 a(n) and A000217(n) have the same parity. %H A359498 Jianing Song, <a href="/A359498/b359498.txt">Table of n, a(n) for n = 0..10000</a> %H A359498 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A359498 a(n) = A000217(n) * A219086(n) * A175110(n) = A219086(n) * A175110(n). %t A359498 ((2*Range[0, 25] + 1)^8 - 1)/32 (* _Paolo Xausa_, Jan 23 2025 *) %o A359498 (PARI) a(n) = ((2*n+1)^8 - 1)/32 %o A359498 (Python) %o A359498 def A359498(n): return ((n<<1)+1)**8-1>>5 # _Chai Wah Wu_, Jan 15 2023 %Y A359498 Cf. {((2*n+1)^2^k - 1)/2^(k+2)}: A000217 (k=1), A219086 (k=2), this sequence (k=3), A359499 (k=4). %K A359498 nonn,easy %O A359498 0,2 %A A359498 _Jianing Song_, Jan 03 2023