A359503 Partial sums of A066839.
1, 2, 3, 6, 7, 10, 11, 14, 18, 21, 22, 28, 29, 32, 36, 43, 44, 50, 51, 58, 62, 65, 66, 76, 82, 85, 89, 96, 97, 108, 109, 116, 120, 123, 129, 145, 146, 149, 153, 165, 166, 178, 179, 186, 195, 198, 199, 215, 223, 231, 235, 242, 243, 255, 261, 275, 279, 282, 283
Offset: 1
Keywords
Programs
-
Mathematica
Table[Select[Divisors[n], # <= Sqrt[n]&]//Total, {n, 1, 60}]//Accumulate (* Jean-François Alcover, Jan 26 2024 *)
-
Python
from itertools import takewhile from sympy import divisors def A359503(n): return sum(sum(takewhile(lambda x:x**2<=i,divisors(i))) for i in range(1,n+1))
Formula
a(n) = m*(6*n+5-m*(2*m+3))/6 + Sum_{k=1..n, i=1..floor(sqrt(k))} [(k-1) mod i] - [k mod i] where m = floor(sqrt(n)).
a(n) = m*(6*n+5-m*(2*m+3))/6 + Sum_{k=1..n, i=1..floor(sqrt(k))} (k-1) mod i - Sum_{k=1..n} A176314(k) where m = floor(sqrt(n)).
Comments