A359504 a(n) is calculated by considering in ascending order all products P of zero or more terms from {a(1..n-1)} until finding one where P+1 has a prime factor not in {a(1..n-1)}, in which case a(n) is the smallest such prime factor.
2, 3, 7, 5, 11, 23, 31, 17, 43, 47, 13, 67, 71, 79, 29, 59, 19, 103, 53, 107, 37, 131, 139, 73, 83, 167, 89, 179, 61, 41, 191, 101, 211, 109, 223, 239, 127, 263, 137, 283, 97, 151, 311, 331, 173, 347, 359, 367, 383, 193, 197, 419, 431, 439, 443, 149, 113, 227, 463
Offset: 1
Keywords
Examples
For n=1, the sole product P is the empty product P=1, and P+1 = 2 is itself prime so a(1) = 2. For n=3, the primes so far are 2,3 but products P=2 or P=3 have P+1 = 3 or 4 which have no new prime factor. Product P = 2*3 = 6 has P+1 = 7 which is a new prime so a(3) = 7. For n=4, the smallest product P with a new prime in P+1 is P = 2*7 = 14 for which P+1 = 15 and a(4) = 5 is its smallest new prime factor.
Links
- Joel Brennan, Table of n, a(n) for n = 1..5000
Extensions
More terms from Kevin Ryde, Jan 10 2023
Comments