This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359508 #22 Mar 08 2025 17:20:29 %S A359508 0,1,1,1,2,1,2,1,2,1,3,1,2,1,3,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,4,1,2,1, %T A359508 3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1, %U A359508 2,1,4,1,2,1,3,1,2,1,5,1,2,1,3,1,2,1,4,1,2,1,3,1,2,1,6,1,2,1,3,1,2,1,4,1,2 %N A359508 a(n) = log_2(A359507(n) - 1). %C A359508 Conjecture: A359507(n) is always of the form 2^m + 1. %C A359508 If log_2(A359507(n) - 1) is not an integer, then define a(n) = -1. %H A359508 Antti Karttunen, <a href="/A359508/b359508.txt">Table of n, a(n) for n = 1..65537</a> %F A359508 a(n) = A000523(A359507(n)-1). %F A359508 Conjecture: %F A359508 a(4k) = 1 for k > 0, %F A359508 a(4k+1) = 2 for k > 0, %F A359508 a(4k+2) = 1 for k > 0, %F A359508 a(4k+3) = a(k) + 2 for k > 0. %F A359508 Apparently, a(n) = abs(A378218(1+n)). [This holds at least up to n=65537] - _Antti Karttunen_, Nov 22 2024 %F A359508 a(n) = A007814((n - 3*b(n + 1) + 2) mod b(n + 1) + b(n + 2) - 1) + 1, where b(n) = 2^A000523(A002264(n)) for n >= 4. - _Alan Michael Gómez Calderón_, Feb 25 2025 %o A359508 (PARI) %o A359508 A359506(n) = if(n==0, return (0), my (x=[n], y); for (m=n+1, oo, if (vecmin(y=[bitxor(v, m) | v<-x])==0, return (m), x=setunion(x, Set(y))))); \\ From A359506. %o A359508 A359507(n) = (A359506(n)-n); %o A359508 A359508(n) = (#digits(A359507(n)-1, 2)-1); \\ _Antti Karttunen_, Nov 22 2024 %Y A359508 Cf. A000523, A359506, A359507, A378218. %K A359508 nonn %O A359508 1,5 %A A359508 _Peter Kagey_, Jan 03 2023 %E A359508 More terms from _Antti Karttunen_, Nov 22 2024