This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359527 #9 Jan 07 2023 13:05:37 %S A359527 0,1,2,3,4,5,8,9,10,11,12,13,14,15,16,17,32,33,34,35,48,49,50,51,64, %T A359527 65,68,69,80,81,84,85,128,129,130,131,132,133,136,137,138,139,140,141, %U A359527 142,143,144,145,152,153,160,161,162,163,164,165,168,169,170,171 %N A359527 Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i OR j) also appears in the binary expansion of k (where OR denotes the bitwise OR operator). %C A359527 Equivalently, numbers whose binary expansions encode union-closed finite sets of finite sets of nonnegative integers: %C A359527 - the encoding is based on a double application of A133457, %C A359527 - for example: 11 -> {0, 1, 3} -> {{}, {0}, {0, 1}}, %C A359527 - a union-closed set f satisfies: for any i and j in f, the union of i and j belongs to f. %C A359527 For any k >= 0, 2*k belongs to the sequence iff 2*k+1 belongs to the sequence. %C A359527 This sequence has similarities with A190939; here we consider the bitwise OR operator, there the bitwise XOR operator. %C A359527 This sequence is infinite as it contains the powers of 2. %H A359527 Wikipedia, <a href="https://en.wikipedia.org/wiki/Union-closed_sets_conjecture">Union-closed sets conjecture</a> %H A359527 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A359527 The first terms, alongside the corresponding union-closed sets, are: %e A359527 n a(n) Union-closed set %e A359527 ---- ----- ---------------------- %e A359527 1 0 {} %e A359527 2 1 {{}} %e A359527 3 2 {{0}} %e A359527 4 3 {{}, {0}} %e A359527 5 4 {{1}} %e A359527 6 5 {{}, {1}} %e A359527 7 8 {{0, 1}} %e A359527 8 9 {{}, {0, 1}} %e A359527 9 10 {{0}, {0, 1}} %e A359527 10 11 {{}, {0}, {0, 1}} %e A359527 11 12 {{1}, {0, 1}} %e A359527 12 13 {{}, {1}, {0, 1}} %e A359527 13 14 {{0}, {1}, {0, 1}} %e A359527 14 15 {{}, {0}, {1}, {0, 1}} %e A359527 15 16 {{2}} %e A359527 16 17 {{}, {2}} %e A359527 17 32 {{0, 2}} %o A359527 (PARI) is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n,2)); setbinop(bitor, b)==b } %Y A359527 Cf. A133457, A190939 (XOR analog), A359528 (AND analog). %K A359527 nonn,base %O A359527 1,3 %A A359527 _Rémy Sigrist_, Jan 04 2023