This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359528 #7 Jan 07 2023 13:05:26 %S A359528 0,1,2,3,4,5,7,8,9,10,11,12,13,15,16,17,19,21,23,25,27,29,31,32,33,34, %T A359528 35,37,39,42,43,47,48,49,51,53,55,59,63,64,65,67,68,69,71,76,77,79,80, %U A359528 81,83,85,87,93,95,112,113,115,117,119,127,128,129,130,131 %N A359528 Nonnegative numbers k such that if 2^i and 2^j appear in the binary expansion of k, then 2^(i AND j) also appears in the binary expansion of k (where AND denotes the bitwise AND operator). %C A359528 Equivalently, numbers whose binary expansions encode intersection-closed finite sets of finite sets of nonnegative integers: %C A359528 - the encoding is based on a double application of A133457, %C A359528 - for example: 11 -> {0, 1, 3} -> {{}, {0}, {0, 1}}, %C A359528 - an intersection-closed set f satisfies: for any i and j in f, the intersection of i and j belongs to f. %C A359528 For any k >= 0, if 2*k belongs to the sequence then 2*k+1 belongs to the sequence. %C A359528 This sequence has similarities with A190939; here we consider the bitwise AND operator, there the bitwise XOR operator. %C A359528 This sequence is infinite as it contains the powers of 2. %H A359528 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A359528 The first terms, alongside the corresponding intersection-closed sets, are: %e A359528 n a(n) Intersection-closed set %e A359528 ---- ----- ----------------------- %e A359528 0 0 {} %e A359528 1 1 {{}} %e A359528 2 2 {{0}} %e A359528 3 3 {{}, {0}} %e A359528 4 4 {{1}} %e A359528 5 5 {{}, {1}} %e A359528 6 7 {{}, {0}, {1}} %e A359528 7 8 {{0, 1}} %e A359528 8 9 {{}, {0, 1}} %e A359528 9 10 {{0}, {0, 1}} %e A359528 10 11 {{}, {0}, {0, 1}} %e A359528 11 12 {{1}, {0, 1}} %e A359528 12 13 {{}, {1}, {0, 1}} %e A359528 13 15 {{}, {0}, {1}, {0, 1}} %e A359528 14 16 {{2}} %e A359528 15 17 {{}, {2}} %e A359528 16 19 {{}, {0}, {2}} %e A359528 17 21 {{}, {1}, {2}} %o A359528 (PARI) is(n) = { my (b=vector(hammingweight(n))); for (i=1, #b, n -= 2^b[i] = valuation(n,2)); setbinop(bitand, b)==b } %Y A359528 Cf. A133457, A190939 (XOR analog), A359527 (OR analog). %K A359528 nonn,base %O A359528 1,3 %A A359528 _Rémy Sigrist_, Jan 04 2023