cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359532 Decimal expansion of 2*log(2)/Pi.

This page as a plain text file.
%I A359532 #22 Apr 10 2025 12:58:06
%S A359532 4,4,1,2,7,1,2,0,0,3,0,5,3,0,3,1,8,6,7,9,2,9,1,2,8,6,4,2,3,5,9,9,5,3,
%T A359532 8,1,9,6,5,3,7,9,4,9,7,4,5,9,3,1,0,9,4,0,9,7,8,5,2,6,4,6,7,4,1,4,2,4,
%U A359532 3,5,3,4,0,9,3,3,7,3,3,6,4,9,9,5,9,8,6,2,2,3,7,0,7,9,3,5,1,1
%N A359532 Decimal expansion of 2*log(2)/Pi.
%C A359532 2*log(2)*n/Pi is also the dominant term in the asymptotic expansion of Sum_{k=1..n-1} (-1)^(k+1)*csc(Pi*k/n) at n tending to infinity. - _Iaroslav V. Blagouchine_, Apr 10 2025
%H A359532 Iaroslav V. Blagouchine, <a href="https://math.colgate.edu/~integers/vol25.html">On a Generalization of Watson's Trigonometric Sum (On Dowker's Sum of Order One Half)</a>, INTEGERS, Electronic Journal of Combinatorial Number Theory, vol. 25, Article #A30, pp. 1-33, 2025. See p. 18.
%H A359532 John M. Campbell, <a href="https://arxiv.org/abs/2212.13305">Applications of a class of transformations of complex sequences</a>, arXiv:2212.13305 [math.NT], 2022. See pp. 2, 8.
%F A359532 Equals A016627/A000796.
%F A359532 Equals A002162*A060294.
%F A359532 Equals 2*A284983.
%F A359532 Equals Sum_{i>=0} (-1/64)^i*binomial(2*i, i)^3*(4*i + 1)*H_{2*i}, where H_m is the m-th harmonic number (negated).
%e A359532 0.441271200305303186792912864235995381965...
%t A359532 First[RealDigits[N[2Log[2]/Pi,98]]]
%Y A359532 Cf. A000796, A001008, A002162, A002805, A002897, A016627, A016813, A060294.
%Y A359532 Cf. A359533.
%K A359532 nonn,cons
%O A359532 0,1
%A A359532 _Stefano Spezia_, Jan 04 2023