This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359562 #16 Jan 25 2023 18:29:29 %S A359562 1,1,5,54,980,26000,977844,48486480,3168454720,257625275760, %T A359562 26347709832000,3217348801257888,477582176242255104, %U A359562 82066363639286366080,16709994767104962690304,3847766849105116759200000,1029727509567022262979280896,306114655769763238348323419392,104188715467117934409088054935552 %N A359562 a(n) is the permanent of an n X n Hermitian Toeplitz matrix whose first row consists of n, (n-1)*i, (n-2)*i, ..., 3*i, 2*i, i, where i denotes the imaginary unit. %H A359562 Wikipedia, <a href="https://en.wikipedia.org/wiki/Toeplitz_matrix">Toeplitz Matrix</a> %F A359562 A359616(n) <= a(n) <= A359617(n). %e A359562 a(3) = 54: %e A359562 [ 3, 2*i, i; %e A359562 -2*i, 3, 2*i; %e A359562 -i, -2*i, 3 ] %t A359562 Join[{1},Table[Permanent[ToeplitzMatrix[Join[{n},I Reverse[Range[n-1]]]]],{n,18}]] %o A359562 (Python) %o A359562 from sympy import Matrix, I %o A359562 def A359562(n): return Matrix(n,n,[(n+j-i if i>j else j-i-n) if i!=j else n*I for i in range(n) for j in range(n)]).per()*(1,-I,-1,I)[n&3] if n else 1 # _Chai Wah Wu_, Jan 25 2023 %Y A359562 Cf. A307783 (symmetric Toeplitz matrix). %Y A359562 Cf. A359559, A359560, A359561 (determinant). %Y A359562 Cf. A359616 (minimal), A359617 (maximal). %K A359562 nonn %O A359562 0,3 %A A359562 _Stefano Spezia_, Jan 06 2023