cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359564 Primitive terms of A359563: terms of A359563 with no proper divisor in A359563.

This page as a plain text file.
%I A359564 #8 Jan 09 2023 01:24:01
%S A359564 63,273,513,585,825,2107,2109,2255,3069,3075,4329,4697,4995,5425,5673,
%T A359564 6039,6643,6935,6975,7105,7161,8103,8349,8541,8645,9855,10235,11543,
%U A359564 12625,13725,13869,14497,14841,16385,18639,18915,19825,22165,25025,26169,26533,30225
%N A359564 Primitive terms of A359563: terms of A359563 with no proper divisor in A359563.
%C A359564 Odd numbers that are not in A326835 but all of their proper divisors are in it.
%C A359564 If k is a term then all the odd multiples of k are terms of A359563.
%H A359564 Amiram Eldar, <a href="/A359564/b359564.txt">Table of n, a(n) for n = 1..10000</a>
%t A359564 q[n_] := !UnsameQ @@ EulerPhi[Divisors[n]]; primQ[n_] := q[n] && AllTrue[Divisors[n], # == n || !q[#] &]; Select[Range[1, 30000, 2], primQ]
%o A359564 (PARI) is1(k) = k>1 && k%2 && numdiv(k) > #Set(apply(x->eulerphi(x), divisors(k)));
%o A359564 is(k) = fordiv(k, d, if(is1(d), return(d==k))); return(0);
%Y A359564 Cf. A326835, A359563, A359565, A359566.
%K A359564 nonn
%O A359564 1,1
%A A359564 _Amiram Eldar_, Jan 06 2023