cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359612 Largest prime factor with minimal exponent in canonical prime factorization of n.

This page as a plain text file.
%I A359612 #30 Feb 08 2023 10:10:23
%S A359612 2,3,2,5,3,7,2,3,5,11,3,13,7,5,2,17,2,19,5,7,11,23,3,5,13,3,7,29,5,31,
%T A359612 2,11,17,7,3,37,19,13,5,41,7,43,11,5,23,47,3,7,2,17,13,53,2,11,7,19,
%U A359612 29,59,5,61,31,7,2,13,11,67,17,23,7,71,3,73,37,3
%N A359612 Largest prime factor with minimal exponent in canonical prime factorization of n.
%C A359612 When inspecting the minimal exponent of the canonical representation of n, a(n) is the largest of those primes, while A067695(n) is the smallest.
%C A359612 On the other hand if the maximal exponent is regarded similarly, A356840(n) is the largest of those primes and A356838(n) is the smallest.
%C A359612 18 is the smallest n, where a(n) differs from A006530(n), since a(18) = 2, while A006530(18) = 3.
%H A359612 Alois P. Heinz, <a href="/A359612/b359612.txt">Table of n, a(n) for n = 2..20000</a>
%e A359612 a(162) = a(2^1 * 3^4) = 2.
%e A359612 a(225) = a(3^2 * 5^2) = 5.
%p A359612 a:= n-> (l-> (m-> max(map(i-> i[1], select(y->y[2]=m,
%p A359612          l))))(min(map(x-> x[2], l))))(ifactors(n)[2]):
%p A359612 seq(a(n), n=2..75);  # _Alois P. Heinz_, Jan 25 2023
%t A359612 a[n_] := Module[{f = FactorInteger[n], e, ind}, e = f[[;; , 2]]; ind = Position[e, Min[e]][[-1, 1]]; f[[ind, 1]]]; Array[a, 100, 2] (* _Amiram Eldar_, Jan 07 2023 *)
%o A359612 (Python)
%o A359612 from sympy import factorint
%o A359612 def a(n):
%o A359612     max_factor = 0
%o A359612     min_exponent = float("inf")
%o A359612     for p, exponent in factorint(n).items():
%o A359612         if exponent < min_exponent:
%o A359612             max_factor = p
%o A359612             min_exponent = exponent
%o A359612         elif exponent == min_exponent:
%o A359612             max_factor = max(max_factor, p)
%o A359612     return max_factor
%o A359612 (Python)
%o A359612 from sympy import factorint
%o A359612 def A359612(n): return (f:=list(map(tuple,zip(*sorted(factorint(n).items(),reverse=True)))))[0][f[1].index(min(f[1]))] # _Chai Wah Wu_, Feb 07 2023
%o A359612 (PARI) a(n) = my(f=factor(n), e=vecmin(f[,2])); f[vecmax(select(x->(x==e), f[,2], 1)), 1]; \\ _Michel Marcus_, Jan 26 2023
%Y A359612 Cf. A006530, A067695, A356838, A356840.
%K A359612 nonn
%O A359612 2,1
%A A359612 _Jens Ahlström_, Jan 06 2023