A359633 a(n) is the least prime > a(n-1) such that a(n-1) and a(n) are quadratic residues mod each other.
2, 7, 29, 53, 59, 137, 139, 173, 179, 193, 197, 223, 241, 251, 317, 353, 383, 389, 409, 419, 457, 461, 467, 541, 557, 563, 593, 601, 607, 701, 743, 761, 769, 773, 787, 797, 811, 853, 857, 859, 881, 883, 929, 937, 941, 947, 977, 991, 1009, 1013, 1019, 1033, 1039, 1049, 1051, 1097, 1129, 1153, 1171
Offset: 1
Keywords
Examples
a(3) = 29 because a(2) = 7, 29 is a quadratic residue mod 7 and 7 is a quadratic residue mod 29, and 29 is the least prime > 7 that works.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(p) local q; q:= p; do q:= nextprime(q); if NumberTheory:-QuadraticResidue(q,p) = 1 and NumberTheory:-QuadraticResidue(p,q) = 1 then return q fi od end proc: A[1]:= 2: for i from 2 to 100 do A[i]:= f(A[i-1]) od: seq(A[i], i=1..100);
Comments