This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359636 #25 Nov 03 2023 06:29:58 %S A359636 7,19,643,51427,8083633,1077940147,75582271489,34710483181813 %N A359636 a(n) is the least odd prime not in A001359 such that all subsequent composites in the gap up to the next prime have at least n distinct prime factors. %C A359636 a(9) <= 76340177205657727, a(10) <= 225096507194749219819. - _David A. Corneth_, Jan 12 2023 %H A359636 Nilotpal Kanti Sinha, <a href="https://mathoverflow.net/questions/414186/are-there-highly-composite-prime-gaps">Are there highly composite prime gaps?</a> Question in mathoverflow, with an answer by Terry Tao, Jan 19 2022. %e A359636 a(1) = 7: trivially, the 3 composites 8 = 2^3, 9 = 3^2, 10 = 2*5, have at least one distinct prime factor; %e A359636 a(2) = 19: 20 = 2^2*5, 21 = 3*7, 22 = 2*11 all have 2 distinct prime factors; %e A359636 a(3) = 643: 644 = 2^2*7*23, 645 = 3*5*43, 646 = 2*17*19, 647 is prime. %o A359636 (PARI) a359636(maxp) = {my (k=1, pp=3); forprime (p=5, maxp, my(mi=oo); if (p-pp>2, for (j=pp+1, p-1, my(mo=omega(j)); if (mo<k, mi=0; break); mi=min(mo,mi)); if (mi>=k, print1(pp,", "); k++)); pp=p)}; %o A359636 a359636(10^7) %Y A359636 Cf. A001359, A075590, A185032. %K A359636 nonn,hard,more %O A359636 1,1 %A A359636 _Hugo Pfoertner_, Jan 12 2023 %E A359636 a(8) from _Martin Ehrenstein_, Nov 03 2023