A359666 Integers k such that sigma(k) <= sigma(k+1) <= sigma(k+2) <= sigma(k+3), where sigma is the sum of divisors.
1, 13, 61, 73, 133, 145, 193, 205, 253, 397, 457, 481, 493, 553, 565, 613, 625, 661, 673, 733, 757, 793, 817, 853, 913, 973, 997, 1033, 1093, 1213, 1237, 1285, 1321, 1333, 1453, 1513, 1537, 1633, 1645, 1657, 1681, 1813, 1825, 1873, 1933, 2077, 2113, 2173, 2233, 2245, 2293, 2413, 2497
Offset: 1
Examples
73 is a term because sigma(73)=74 <= sigma(74)=114 <= sigma(75)=124 <= sigma(76)=140.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Position[OrderedQ /@ Partition[DivisorSigma[1, Range[2500]], 4, 1], True] // Flatten (* Amiram Eldar, Feb 28 2023 *)
-
PARI
isok(n)=sigma(n)<=sigma(n+1) && sigma(n+1)<=sigma(n+2) && sigma(n+2)<=sigma(n+3)