This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359675 #7 Jan 15 2023 09:51:00 %S A359675 1,4,6,8,12,14,16,20,24,30,32,36,40,48,52,56,72,80,92,96,100,104,112, %T A359675 124,136,148,152,172,176,184,188,212,214,236,244,248,262,268,272,284, %U A359675 292,304,316,328,332,346,356,376,386,388,398,404,412,428,436,452,458 %N A359675 Positions of first appearances in the sequence of zero-based weighted sums of prime indices (A359674). %C A359675 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A359675 The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i. %e A359675 The terms together with their prime indices begin: %e A359675 1: {} %e A359675 4: {1,1} %e A359675 6: {1,2} %e A359675 8: {1,1,1} %e A359675 12: {1,1,2} %e A359675 14: {1,4} %e A359675 16: {1,1,1,1} %e A359675 20: {1,1,3} %e A359675 24: {1,1,1,2} %e A359675 30: {1,2,3} %e A359675 32: {1,1,1,1,1} %e A359675 36: {1,1,2,2} %e A359675 40: {1,1,1,3} %e A359675 48: {1,1,1,1,2} %t A359675 nn=100; %t A359675 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A359675 wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; %t A359675 seq=Table[wts[primeMS[n]],{n,1,nn}]; %t A359675 Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&] %Y A359675 Positions of first appearances in A359674. %Y A359675 The unsorted version A359676. %Y A359675 The reverse version is A359680, unsorted A359681. %Y A359675 The reverse one-based version is A359754, unsorted A359679. %Y A359675 The one-based version is A359755, unsorted A359682. %Y A359675 The version for standard compositions is A359756, one-based A089633. %Y A359675 A053632 counts compositions by zero-based weighted sum. %Y A359675 A112798 lists prime indices, length A001222, sum A056239. %Y A359675 A124757 gives zero-based weighted sum of standard compositions, rev A231204. %Y A359675 A304818 gives weighted sum of prime indices, reverse A318283. %Y A359675 A320387 counts multisets by weighted sum, zero-based A359678. %Y A359675 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361. %Y A359675 Cf. A001248, A029931, A055932, A243055, A359043, A358194, A359360, A359497, A359677, A359683. %K A359675 nonn %O A359675 1,2 %A A359675 _Gus Wiseman_, Jan 13 2023