This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359676 #6 Jan 15 2023 09:51:05 %S A359676 1,4,6,8,14,12,16,20,30,24,32,36,40,52,48,56,100,72,80,92,96,104,112, %T A359676 124,136,148,176,152,214,172,184,188,262,212,272,236,248,244,304,268, %U A359676 346,284,328,292,386,316,398,332,376,356,458,388,478,404,472,412,526 %N A359676 Least positive integer whose weakly increasing prime indices have zero-based weighted sum n (A359674). %C A359676 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A359676 The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i. %e A359676 The terms together with their prime indices begin: %e A359676 1: {} %e A359676 4: {1,1} %e A359676 6: {1,2} %e A359676 8: {1,1,1} %e A359676 14: {1,4} %e A359676 12: {1,1,2} %e A359676 16: {1,1,1,1} %e A359676 20: {1,1,3} %e A359676 30: {1,2,3} %e A359676 24: {1,1,1,2} %e A359676 32: {1,1,1,1,1} %e A359676 36: {1,1,2,2} %e A359676 40: {1,1,1,3} %e A359676 52: {1,1,6} %e A359676 48: {1,1,1,1,2} %t A359676 nn=20; %t A359676 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A359676 wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; %t A359676 seq=Table[wts[primeMS[n]],{n,1,Prime[nn]^2}]; %t A359676 Table[Position[seq,k][[1,1]],{k,0,nn}] %Y A359676 First position of n in A359674, reverse A359677. %Y A359676 The sorted version is A359675, reverse A359680. %Y A359676 The reverse one-based version is A359679, sorted A359754. %Y A359676 The reverse version is A359681. %Y A359676 The one-based version is A359682, sorted A359755. %Y A359676 The version for standard compositions is A359756, one-based A089633. %Y A359676 A053632 counts compositions by zero-based weighted sum. %Y A359676 A112798 lists prime indices, length A001222, sum A056239. %Y A359676 A124757 gives zero-based weighted sum of standard compositions, rev A231204. %Y A359676 A304818 gives weighted sums of prime indices, reverse A318283. %Y A359676 A320387 counts multisets by weighted sum, zero-based A359678. %Y A359676 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361. %Y A359676 Cf. A001248, A029931, A055932, A243055, A359043, A358194, A359497, A359683. %K A359676 nonn,look %O A359676 1,2 %A A359676 _Gus Wiseman_, Jan 14 2023