This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359678 #10 Jan 22 2023 11:33:55 %S A359678 1,2,4,4,6,9,8,10,14,13,16,21,17,22,28,23,30,37,30,38,46,38,46,59,46, %T A359678 55,70,59,70,86,67,81,96,84,98,115,95,114,135,114,132,158,127,156,178, %U A359678 148,176,207,172,201,227,196,228,270,222,255,296,255,295,338,278 %N A359678 Number of multisets (finite weakly increasing sequences of positive integers) with zero-based weighted sum (A359674) equal to n > 0. %C A359678 The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i. %H A359678 Andrew Howroyd, <a href="/A359678/b359678.txt">Table of n, a(n) for n = 1..1000</a> %F A359678 G.f.: Sum_{k>=2} x^binomial(k,2)/((1 - x^binomial(k,2))*Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2)))). - _Andrew Howroyd_, Jan 22 2023 %e A359678 The a(1) = 1 through a(8) = 10 multisets: %e A359678 {1,1} {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8} %e A359678 {2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8} %e A359678 {3,3} {3,4} {3,5} {3,6} {3,7} {3,8} %e A359678 {1,1,1} {4,4} {4,5} {4,6} {4,7} {4,8} %e A359678 {5,5} {5,6} {5,7} {5,8} %e A359678 {1,1,2} {6,6} {6,7} {6,8} %e A359678 {1,2,2} {7,7} {7,8} %e A359678 {2,2,2} {1,1,3} {8,8} %e A359678 {1,1,1,1} {1,2,3} %e A359678 {2,2,3} %t A359678 zz[n_]:=Select[IntegerPartitions[n],UnsameQ@@#&&GreaterEqual @@ Differences[Append[#,0]]&]; %t A359678 Table[Sum[Append[z,0][[1]]-Append[z,0][[2]],{z,zz[n]}],{n,30}] %o A359678 (PARI) seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)+1)\2, my(t=binomial(k, 2)); x^t/((1-x^t)*prod(j=1, k-1, 1 - x^(t-binomial(j, 2)) + O(x^(n-t+1))))))} \\ _Andrew Howroyd_, Jan 22 2023 %Y A359678 The one-based version is A320387. %Y A359678 Number of appearances of n > 0 in A359674. %Y A359678 The sorted minimal ranks are A359675, reverse A359680. %Y A359678 The minimal ranks are A359676, reverse A359681. %Y A359678 The maximal ranks are A359757. %Y A359678 A053632 counts compositions by zero-based weighted sum. %Y A359678 A124757 gives zero-based weighted sums of standard compositions, rev A231204. %Y A359678 Cf. A029931, A243055, A304818, A358194, A359677. %K A359678 nonn %O A359678 1,2 %A A359678 _Gus Wiseman_, Jan 15 2023