A359679 Least number with weighted sum of reversed (weakly decreasing) prime indices (A318283) equal to n.
1, 2, 3, 4, 6, 10, 8, 12, 19, 18, 16, 24, 27, 36, 43, 32, 48, 59, 61, 67, 71, 64, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269
Offset: 0
Keywords
Examples
12 has reversed prime indices (2,1,1), with weighted sum 7, and no number < 12 has the same weighted sum of reversed prime indices, so a(7) = 12.
Crossrefs
Programs
-
Mathematica
nn=20; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; ots[y_]:=Sum[i*y[[i]],{i,Length[y]}]; seq=Table[ots[Reverse[primeMS[n]]],{n,1,Prime[nn]^2}]; Table[Position[seq,k][[1,1]],{k,0,nn}]
Comments