This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359680 #5 Jan 16 2023 11:14:55 %S A359680 1,4,8,9,16,18,32,36,50,54,64,72,81,100,108,128,144,216,243,256,288, %T A359680 300,400,432,486,512,576,600,648,729,800,864,1024,1152,1296,1350,1728, %U A359680 1944,2048,2187,2304,2400,2916,3375,3456,3600,4096,4374,4608,4800,5184 %N A359680 Positions of first appearances in the sequence of zero-based weighted sums of reversed prime indices (A359677). %C A359680 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A359680 The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i. %e A359680 The terms together with their prime indices begin: %e A359680 1: {} %e A359680 4: {1,1} %e A359680 8: {1,1,1} %e A359680 9: {2,2} %e A359680 16: {1,1,1,1} %e A359680 18: {1,2,2} %e A359680 32: {1,1,1,1,1} %e A359680 36: {1,1,2,2} %e A359680 50: {1,3,3} %e A359680 54: {1,2,2,2} %e A359680 64: {1,1,1,1,1,1} %e A359680 72: {1,1,1,2,2} %e A359680 81: {2,2,2,2} %e A359680 100: {1,1,3,3} %e A359680 108: {1,1,2,2,2} %e A359680 128: {1,1,1,1,1,1,1} %t A359680 nn=1000; %t A359680 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A359680 wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}]; %t A359680 seq=Table[wts[Reverse[primeMS[n]]],{n,1,nn}]; %t A359680 Select[Range[nn],FreeQ[seq[[Range[#-1]]],seq[[#]]]&] %Y A359680 The unreversed version is A359675, unsorted A359676. %Y A359680 Positions of first appearances in A359677, unreversed A359674. %Y A359680 This is the sorted version of A359681. %Y A359680 The one-based version is A359754, unsorted A359679. %Y A359680 The unreversed one-based version is A359755, unsorted A359682. %Y A359680 The version for standard compositions is A359756, one-based A089633. %Y A359680 A053632 counts compositions by zero-based weighted sum. %Y A359680 A112798 lists prime indices, length A001222, sum A056239, reverse A296150. %Y A359680 A124757 gives zero-based weighted sums of standard compositions, rev A231204. %Y A359680 A304818 gives weighted sum of prime indices, reverse A318283. %Y A359680 A320387 counts multisets by weighted sum, zero-based A359678. %Y A359680 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361. %Y A359680 Cf. A029931, A055932, A243055, A358194, A359043, A359683. %K A359680 nonn %O A359680 1,2 %A A359680 _Gus Wiseman_, Jan 15 2023