cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359682 Least positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.

This page as a plain text file.
%I A359682 #7 Jan 15 2023 09:51:36
%S A359682 1,2,3,4,7,6,8,10,15,12,16,18,20,26,24,28,50,36,40,46,48,52,56,62,68,
%T A359682 74,88,76,107,86,92,94,131,106,136,118,124,122,152,134,173,142,164,
%U A359682 146,193,158,199,166,188,178,229,194,239,202,236,206,263,214,271,218
%N A359682 Least positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n.
%C A359682 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A359682 The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i.
%e A359682 The 5 numbers with weighted sum of prime indices 12, together with their prime indices:
%e A359682   20: {1,1,3}
%e A359682   27: {2,2,2}
%e A359682   33: {2,5}
%e A359682   37: {12}
%e A359682   49: {4,4}
%e A359682 Hence a(12) = 20.
%t A359682 nn=20;
%t A359682 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A359682 ots[y_]:=Sum[i*y[[i]],{i,Length[y]}];
%t A359682 seq=Table[ots[primeMS[n]],{n,1,Prime[nn]^2}];
%t A359682 Table[Position[seq,k][[1,1]],{k,0,nn}]
%Y A359682 The version for standard compositions is A089633, zero-based A359756.
%Y A359682 First position of n in A304818, reverse A318283.
%Y A359682 The greatest instead of least is A359497, reverse A359683.
%Y A359682 The sorted zero-based version is A359675, reverse A359680.
%Y A359682 The zero-based version is A359676, reverse A359681.
%Y A359682 The reverse version is A359679.
%Y A359682 The sorted version is  A359755, reverse A359754.
%Y A359682 A112798 lists prime indices, length A001222, sum A056239.
%Y A359682 A320387 counts multisets by weighted sum, zero-based A359678.
%Y A359682 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361.
%Y A359682 Cf. A001248, A029931, A055932, A243055, A359043, A358194, A359360.
%K A359682 nonn
%O A359682 0,2
%A A359682 _Gus Wiseman_, Jan 15 2023