This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359682 #7 Jan 15 2023 09:51:36 %S A359682 1,2,3,4,7,6,8,10,15,12,16,18,20,26,24,28,50,36,40,46,48,52,56,62,68, %T A359682 74,88,76,107,86,92,94,131,106,136,118,124,122,152,134,173,142,164, %U A359682 146,193,158,199,166,188,178,229,194,239,202,236,206,263,214,271,218 %N A359682 Least positive integer whose weakly increasing prime indices have weighted sum (A304818) equal to n. %C A359682 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A359682 The weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. %e A359682 The 5 numbers with weighted sum of prime indices 12, together with their prime indices: %e A359682 20: {1,1,3} %e A359682 27: {2,2,2} %e A359682 33: {2,5} %e A359682 37: {12} %e A359682 49: {4,4} %e A359682 Hence a(12) = 20. %t A359682 nn=20; %t A359682 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A359682 ots[y_]:=Sum[i*y[[i]],{i,Length[y]}]; %t A359682 seq=Table[ots[primeMS[n]],{n,1,Prime[nn]^2}]; %t A359682 Table[Position[seq,k][[1,1]],{k,0,nn}] %Y A359682 The version for standard compositions is A089633, zero-based A359756. %Y A359682 First position of n in A304818, reverse A318283. %Y A359682 The greatest instead of least is A359497, reverse A359683. %Y A359682 The sorted zero-based version is A359675, reverse A359680. %Y A359682 The zero-based version is A359676, reverse A359681. %Y A359682 The reverse version is A359679. %Y A359682 The sorted version is A359755, reverse A359754. %Y A359682 A112798 lists prime indices, length A001222, sum A056239. %Y A359682 A320387 counts multisets by weighted sum, zero-based A359678. %Y A359682 A358136 lists partial sums of prime indices, ranked by A358137, rev A359361. %Y A359682 Cf. A001248, A029931, A055932, A243055, A359043, A358194, A359360. %K A359682 nonn %O A359682 0,2 %A A359682 _Gus Wiseman_, Jan 15 2023