cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359700 a(n) = Sum_{d|n} d^(d + n/d - 1).

This page as a plain text file.
%I A359700 #19 Aug 14 2023 01:59:57
%S A359700 1,5,28,265,3126,46754,823544,16778273,387420733,10000015690,
%T A359700 285311670612,8916100733146,302875106592254,11112006831323074,
%U A359700 437893890380939688,18446744073843786241,827240261886336764178,39346408075300026047027
%N A359700 a(n) = Sum_{d|n} d^(d + n/d - 1).
%H A359700 Seiichi Manyama, <a href="/A359700/b359700.txt">Table of n, a(n) for n = 1..386</a>
%F A359700 G.f.: Sum_{k>0} (k * x)^k / (1 - k * x^k).
%F A359700 If p is prime, a(p) = 1 + p^p.
%t A359700 a[n_] := DivisorSum[n, #^(# + n/# - 1) &]; Array[a, 20] (* _Amiram Eldar_, Aug 14 2023 *)
%o A359700 (PARI) a(n) = sumdiv(n, d, d^(d+n/d-1));
%o A359700 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-k*x^k)))
%Y A359700 Cf. A014566, A055225, A087909, A294956, A353013, A353014.
%K A359700 nonn
%O A359700 1,2
%A A359700 _Seiichi Manyama_, Jan 11 2023