cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A359701 a(n) = Sum_{d|n} d^(d + n/d - 2).

This page as a plain text file.
%I A359701 #16 Aug 14 2023 02:00:14
%S A359701 1,3,10,69,626,7812,117650,2097425,43046803,1000003158,25937424602,
%T A359701 743008418676,23298085122482,793714774077816,29192926025406980,
%U A359701 1152921504623628545,48661191875666868482,2185911559739084235093,104127350297911241532842
%N A359701 a(n) = Sum_{d|n} d^(d + n/d - 2).
%F A359701 G.f.: Sum_{k>0} k^(k-1) * x^k / (1 - k * x^k).
%F A359701 If p is prime, a(p) = 1 + p^(p-1).
%t A359701 a[n_] := DivisorSum[n, #^(# + n/# - 2) &]; Array[a, 20] (* _Amiram Eldar_, Aug 14 2023 *)
%o A359701 (PARI) a(n) = sumdiv(n, d, d^(d+n/d-2));
%o A359701 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-k*x^k)))
%Y A359701 Cf. A082245, A124923, A262843, A294956.
%K A359701 nonn
%O A359701 1,2
%A A359701 _Seiichi Manyama_, Jan 11 2023